期刊文献+

针对运动摄像机的快速低存储开销运动目标检测算法

Fast and memory-saving algorithm for moving object detection from a moving camera
下载PDF
导出
摘要 摄像机的运动会导致整幅图像的运动,使得此情形下的目标检测极具挑战性。针对该问题提出一种快速低存储开销检测算法。首先,利用一种快速低存储开销配准方法计算相邻两帧的单应变换矩阵。而后,使用单应变换矩阵进行相邻两帧之间的配准,并由帧间差分获取帧间运动信息。最后,采用积累运动信息的方式构造不断更新的运动图像,通过对此运动图像进行阈值分割分离出最终的运动目标。在多个不同视频序列下的实验表明该算法能够有效地从嘈杂的场景中检测出运动目标。此外,与先前算法相比,该算法检测性能更好,且显著地降低了存储开销与计算时间开销。对于480×360的序列而言,该算法需要的存储开销仅为825 kByte,且运算速度达到16帧/m。 Abstract: It is challenging to detect moving objects from a moving camera as a motion field in the entire image can be induced by the camera motion. A fast and memory-saving detection method is proposed to resolve this problem. First, a fast and memory-saving registration scheme is used to estimate the homography transform between two neighboring frames. Then, neighboring frames is registered with the estimated transform, and frame-to-frame difference is performed to capture the motion cue. Finally, the motion cues are aggregated to construct a constantly updated motion image. After thresholding the motion image, separation of moving objects from the background is achieved. The effectiveness of the proposed method in detecting moving objects from cluttered scenes is validated via experiments on several different video sequences. In addition, this method performs better than previous techniques, while using a fraction of the computation time and a fraction of the memory as well. Specifically, with a memory usage of 825 kByte only, this method runs at 16 fram per second for a sequence with an image resolution of 480x360.
出处 《红外与激光工程》 EI CSCD 北大核心 2013年第8期2275-2280,共6页 Infrared and Laser Engineering
基金 中国空空导弹研究院青年创新基金(CQKJJ00)
关键词 运动摄像机 目标检测 图像配准 快速算法 低存储开销 moving camera object detection image registration fast algorithm memory-saving
  • 相关文献

参考文献4

二级参考文献30

  • 1王炳健,刘上乾,程玉宝.基于FPGA的红外焦平面实时图像处理系统[J].红外与激光工程,2006,35(6):655-658. 被引量:11
  • 2Anand Shastry, Robert Schowengerdt. Airborne video registration and traffic-flow parameter estimation[J]. IEEE Transactions on Intelligent Transportation Systems, 2005, 6(4): 391-405.
  • 3Ban:on J, Fleet D, Beauchemin S. Performance of optical flow techniques [J]. International Journal of Computer Vision, 1994,12(1): 43-77.
  • 4Lo B P L, Velastin S A. Automatic congestion detection system for underground platforms [C]//Proceedings of 2001 International Symposium on Intelligent Multimedia, Video and Speech Processing, 2001: 158-161.
  • 5Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking [C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1999, 2: 246-252.
  • 6Ying Ren, ChinSeng Chua, YeongKhing Ho. Motion detection with non-stationary background [J]. Machine Vision and Applications, 2003, 13: 332-343.
  • 7Elgammal, A Duraiswami, R Harwood, D Davis, L S. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance [C]//Proceedings of the IEEE, 2002, 90(7):1151-1163.
  • 8Harris C, Stephens M J. A combined comer and edge detector[C] //Proceedings of the 4th Alvey Vision Conference, 1988: 147-151.
  • 9Stauffer C,Grimson W E L.Learning patterns of activityusing real-time tracking[J].IEEE Transactions on Pattern Analysis&Machine Intelligence,2000,22(8):747-757.
  • 10Kim K,Chalidabhongse T H,Harwood D,et al.Real-time foreground-background segmentation using codebook model[J].Real-Time Imaging,2005,11:172-185.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部