期刊文献+

基于MLE算法的海上角度交会测量方法及其精度分析 被引量:4

Marine Angle Intersection Method Based on MLE Algorithmand its Precision Analysis
下载PDF
导出
摘要 针对我国现有测量船单站REA测量体制精度相对较低的问题,提出了基于光电经纬仪的海上角度交会测量方法。介绍了角度交会测量原理和设备布站原则,构建了AE-AE异面交会测量系统,设计了基于MLE(Maximum Likelihood Estimation)算法的海上角度交会测量算法和船摇修正方法,仿真分析了船体姿态测量误差、设备测角误差以及站址定位误差等的影响。仿真结果表明,站址测量误差是海上角度交会测量的最主要误差源,船体姿态测量误差和设备测角误差对海上角度交会测量精度有一定的影响,当船体水平姿态测量误差优于20″、航向测量误差优于30″、设备测角误差优于20″、站址测量误差优于1 m时,海上角度交会测量精度可达1 m。该法解决了动态条件下的飞行目标高精度测量技术难题,为后续工程设计奠定了基础。 In order to solve the problem that China′s space tracking ship′s REA measurement system has relatively low precision due to single station,a marine angle intersection measurement method based on photoelectric theodolite is proposed.Firstly,the basic principle of angle intersection and equipment arranging requirement are introduced.Secondly,an AE-AE non-coplane intersection measurement system is constructed.Thirdly,the marine angle intersection algorithm based on maximum likelihood estimation(MLE) method and ship attitude correction method are designed.Finally,the simulation is carried out.Simulation results indicate that the site positioning error is the main error source of marine angle intersection,and the ship attitude measurement error and the angle measurement error of theodolite also have a certain impact on the marine angle intersection.When the ship horizontal attitude measurement error is less than 20″,the course measurement error is less than 30″,the angel measurement error of theodolite is less than 20″,and the site positioning measurement error is less than 1 m,the accuracy of marine angle intersection can reach 1 m.This method can solve the problem of the high precision target measurement in dynamic conditions,and lay the foundation for the further engineering application.
出处 《电讯技术》 北大核心 2013年第8期1033-1038,共6页 Telecommunication Engineering
关键词 航天测量船 REA测量体制 光电经纬仪 交会测量 异面交会 交会角 space tracking ship REA measurement system photoelectric theodolite intersection non-coplane angle intersection intersection angle
  • 相关文献

参考文献10

  • 1江文达.航天测量船[M].北京:国防工业出版社,2002.
  • 2顾青,毛建民.光电经纬仪空中轨迹交会测量方法研究及误差分析[J].地矿测绘,2009,25(1):12-14. 被引量:4
  • 3谢卫红,张明.航天测控系统[M].长沙:国防科技大学出版社,2000.
  • 4康德勇,李晓勇,王旭良,戴正旭.船位误差对外弹道测量及定轨精度的影响[J].电讯技术,2010,50(9):106-109. 被引量:12
  • 5Musoff H, Murphy J H. A Study of Strapdown Navigation Al-gorithms[ J]. Journal of Guidance, Control, and Dynamics,1995,18(2): 287 - 290.
  • 6Le A Q,Tiberius C. Single-frequency Precise Point Position-ing with Optimal Filtering [ J ]. GPS Solutions,2007,11(1):61-69.
  • 7Zumbege J F,Heflin M B, Jefferson D C,et al. Precise PointPositioning for the Efficient and Robust Analysis of GPS Datafrom Large Networks [j]. Geophys Research, 1997,102( B3):5005-5017.
  • 8Carlson N A. Federated Filter for Fault-tolerant IntegratedNavigation systems [ C ] //Proceedings of IEEE PLANS 1988.Orlando,FL: IEEE,1988:110 - 119.
  • 9金伟,刘百奇,宫晓琳,等.惯性/天文/卫星组合导航技术[M].北京:国防工业出版社,2011.
  • 10张同双,钟德安,李晓勇,冯鸿奎,杨磊.基于递推最小二乘算法的惯导姿态误差动态标定方法[J].电讯技术,2011,51(8):11-15. 被引量:8

二级参考文献12

  • 1李晓勇,张忠华,何晶.船体变形对航天测量船外弹道测量的影响[J].飞行器测控学报,2006,25(3):7-12. 被引量:25
  • 2刘利生.外测数据事后处理[M].北京:国防工业出版社,2001.
  • 3刘蕴才,张纪升,黄学德.导弹卫星测控总体[M].北京:国防工业出版社,2000.
  • 4何照才.光电测量[M].北京:国防工业出版社,2000.
  • 5GJB1381.1—92,导弹、航天器试验外测设备的精度评定光电经纬仪[S].北京:国防科工委军标出版发行部,1993.
  • 6中国人民解放军总装军事训练教材编委会.靶场大地测量[M].北京:国防工业出版社,2004.
  • 7茅永兴.航天器轨道确定的单位矢量法[M].北京:国防工业出版社,2008.
  • 8MacMillan D S, Ma C. Evaluation of very long baseline interferometry atmospheric modeling improvements [J]. Journal of Geophysical Research, 1994,99(B1) :637 - 651.
  • 9李哲,苏秀琴,乔永明,郝伟,陆陶.基于船姿测量的舰载光电经纬仪视轴稳定方法研究[J].光子学报,2009,38(6):1552-1556. 被引量:7
  • 10周朝猛,朱伟康,张同双,李晓勇,冯鸿奎,卢鲁.基于星体测量的惯导水平姿态标定技术[J].中国惯性技术学报,2009,17(3):253-257. 被引量:3

共引文献62

同被引文献26

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部