期刊文献+

改进的基于长时谱能量差异和基音比例的语音检测方法 被引量:1

Improved Voice Activity Detection Based on Long-term Spectral Divergence and Pitch Ratio Features
下载PDF
导出
摘要 语音检测是语音信号处理的前端,利用长时谱能量差异特征的语音检测无法区分突发噪声和语音,掺杂着突发噪声的语音信号会对语音处理系统带来不良影响。提出了一种基于长时谱能量差异特征和基音比例特征相结合的语音检测方法,该方法的优点是,在利用长时谱能量差异特征基础上引入基音比例特征,从而有效减少了将信号中突发噪声误判为语音的错误。实验显示,该算法能够在多种信噪比环境下取得很好的检测结果。 Voice Activity Detection(VAD) is the front-end of speech processing and the VAD algorithm which uses long-term spectral divergence(LTSD) feature can′t discriminate abrupt noise from speech.The speech signal with abrupt noise will adversely affect the speech processing system.This paper proposes a VAD algorithm which combines LTSD feature and pitch ratio feature.The advantage of the algorithm is that by introducing pitch ratio feature,it can effectively reduce the false alarms of taking abrupt noise as speech.Experimental results show that the algorithm achieves good performance for VAD under various signal-to-noise ratios.
出处 《电讯技术》 北大核心 2013年第8期1039-1043,共5页 Telecommunication Engineering
关键词 语音信号处理 语音检测 长时谱能量差异 基音比例 突发噪声 speech processing voice activity detection long-term spectral divergence pitch ratio burst noise
  • 相关文献

参考文献8

  • 1Jongseo S, Kim N, Sung W. A statistical model-based voiceactivity delection[j] . lE'.EK Signal Processing I x^tlers, 1999,6(1):1-3.
  • 2陈振标,徐波.基于子带能量特征的最优化语音端点检测算法研究[J].声学学报,2005,30(2):171-176. 被引量:22
  • 3国雁萌,付强,颜永红.复杂噪声环境中的语音端点检测[J].声学学报,2006,31(6):549-554. 被引量:17
  • 4Ramirez J, Segura J, Benitez C, et al. Efficient voice activi-ty detection algorithms using long-term speech information[J]. Speech Communication,2004,42(3) :271 - 287.
  • 5Kumar P, Tsiartas A, Narayanan S. Robust voice activity de- tection using long-term signal variability [ J]. IEEE Transac- tions on Audio, Speech, and Language Processing,2011,19 (3):600-613.
  • 6李晔,张仁智,崔慧娟,唐昆.低信噪比下基于谱熵的语音端点检测算法[J].清华大学学报(自然科学版),2005,45(10):1397-1400. 被引量:37
  • 7杨行竣.语音信号数字处理[M].北京:电子工业出版社,1995..
  • 8Douglas R A, Rose R C. Robust text-independent speaker i-dentification using Gaussian mixture speaker models [ J ].IEEE Transactions on Audio, Speech and Language Process-ing, 1995(3) :72 - 83.

二级参考文献33

  • 1果永振,何遵文.一种多特征语音端点检测算法及实现[J].通信技术,2003,36(1):8-10. 被引量:8
  • 2栗学丽,丁慧,徐柏龄.基于熵函数的耳语音声韵分割法[J].声学学报,2005,30(1):69-75. 被引量:34
  • 3陈振标,徐波.基于子带能量特征的最优化语音端点检测算法研究[J].声学学报,2005,30(2):171-176. 被引量:22
  • 4Junqua J C, Mak B, Reaves B. A robust algorithm for word boundary detection in the presence of noise [J]. IEEE Transactions on speech and Audio Processing, 1994, 2(3):406-412.
  • 5Beritelli F, Casale S, Ruggeri G, et al. Performances evaluation and comparision of G. 729/AMR/fuzzy voice activity detectors [J]. IEEE Signal Processing Letters,2002, 9(3): 85-88.
  • 6Pencak J, Neloson D. The NP speech activity detection algorithm [J]. Int Conf Acoustics, Speech and Signal Processing, 1995. 381 - 384.
  • 7Nemer E, Goubran R, Mahmoud S. Robust voice activity detection using higher-order statistics in the LPC residual domain [J]. IEEE Trans Speech and Audio Processing,2001, 9(3): 217-231.
  • 8Woo K H, Yang T Y, Park K J, et al. Robust voice activity detection algorithm for estimating noise spectrum [J].Electronics Letters, 2000, 36(2) : 180 - 181.
  • 9迟惠生 杨行峻 唐昆.语音信号数字处理[M].北京:电子工业出版社,1995..
  • 10Wu G D, Lin C T. Word boundary detection with mel-scale frequency bank in noisy environment. IEEE Transactions on Speech and Audio Processing, 2000; 8(5): 541-554.

共引文献72

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部