期刊文献+

应用尺度不变特征变换的多源遥感影像特征点匹配 被引量:27

SIFT feature matching algorithm of multi-source remote image
下载PDF
导出
摘要 针对多源遥感影像之间灰度值非线性变化导致特征点匹配率大幅度下降的问题,提出了一种利用光谱信息的多源遥感影像特征点匹配算法。首先,以光谱信息对遥感影像波段进行线性拟合,使待匹配影像与参考影像之间的灰度值由非线性转变为线性或者近似线性变化。接着,在拟合的遥感影像上采用改进的尺度不变特征变换(SIFT)算法进行匹配。最后,采用随机抽样一致性算法剔除误匹配点对。与常用特征点检测算法(SIFT,梯度位置朝向直方图(GLOH),RS-SIFT)的对比实验结果表明,本文所用的ETM+影像全色与多光谱影像的特征点匹配率提高了4%左右,CBERS-02B和HJ-1B卫星多光谱影像的正确特征点匹配个数增加了8对。因此,在多源遥感影像特征点匹配中,本文所提算法优于其它检测算法,可以极大地改善匹配效果。 Many traditional feature point algorithms can not handle more complex nonlinear brightness changes because the gray between multi-source remote sensing images is nonlinear changes. To cover the shortage, a Scale Invariant Feature Transform(SIFT) feature matching algorithm of multi-source remote sensing images was proposed. First, the approximate linear gray value between multi-source remote sensing images was achieved through linear fitting of the bands of the images. Then, an im- proved SIFT algorithm was adopted to match the fitted remote sensing images. Finally, the random sample Consensus algorithm was used to remove the false matching point pairs. In comparison with other feature matching algorithms (SIFT, Gradient Location Orientation Hologram(GLOH), RS- SIFT). The experimental results show that the feature matching rate increases by about 4% between ETM+ panchromatic and multispectral images and the number of correct matches of key points increases by about 8 point pairs between CBERS-02B and HJ-1B images. It concludes that the proposed method significantly outperforms many state-of-the-art methods under multi-source remote sensing images.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2013年第8期2146-2153,共8页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.41001265) 国家发展改革委员会“遥感卫星应用国家工程实验室建设”项目(No.O92601101C)
关键词 图像处理 特征点匹配 尺度不变特性变换(SIFT) 多源遥感影像 多光谱 image processing feature point matching Scale Invariant Feature Transform (SIFT) multi-spectral remote image multi-spectra
  • 相关文献

参考文献16

  • 1LOWED G.Distinctive image features from scaleinvariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 2李英,李静宇,徐正平.结合SURF与聚类分析方法实现运动目标的快速跟踪[J].液晶与显示,2011,26(4):544-550. 被引量:20
  • 3丘文涛,赵建,刘杰.结合区域分割的SIFT图像匹配方法[J].液晶与显示,2012,27(6):827-831. 被引量:32
  • 4ZHOU H Y,YUAN Y,SHI CH M.Object tracking using SIFT features and mean shift[J].Computer Vision and Image Understanding,2009,113(3):345-352.
  • 5纪华,吴元昊,孙宏海,王延杰.结合全局信息的SIFT特征匹配算法[J].光学精密工程,2009,17(2):439-444. 被引量:70
  • 6ZHAO Z S,TIAN Q J,WANG J Z,et al.Image match using distribution of colorful SIFT[C].2010International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR),2010:150-153.
  • 7YI Z,ZHIGUO C,YANG X.Multi-spectral remoteimage registration based on SIFT[J].Electronics Letters,2008,44(2):107-108.
  • 8TEKE M,TEMIZEL A.Multi-spectral satellite image registration using scale-restricted SURF[C].20th International Conference on Pattern Recognition (ICPR),2010:2310-2313.
  • 9Jian Chen, Jie Tian Institute of Automation, Chinese Academy of Science, Beijing 100080, China.Real-time multi-modal rigid registration based on a novel symmetric-SIFT descriptor[J].Progress in Natural Science:Materials International,2009,19(5):643-651. 被引量:10
  • 10VURAL M F,YARDIMCI Y,TEMIZEL A.Registration of multispectral satellite images with orientation-restricted SIFT[C].IEEE International Conference on Science and Remote Sensing Symposium,2009:Ⅲ-243-Ⅲ-246.

二级参考文献36

  • 1倪国强,刘琼.多源图像配准技术分析与展望[J].光电工程,2004,31(9):1-6. 被引量:83
  • 2丁雪梅,王维雅,黄向东.基于差分和特征不变量的运动目标检测与跟踪[J].光学精密工程,2007,15(4):570-576. 被引量:30
  • 3王国美,陈孝威.SIFT特征匹配算法研究[J].盐城工学院学报(自然科学版),2007,20(2):1-5. 被引量:24
  • 4Lindeberg T. Feature detection with automatic scale selection [J]. International Journal of Computer Vision, 1998, 30(2):79-1162.
  • 5Lowe D G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision (IJCV), 2004, 60(2) :91-110.
  • 6Bay H, Tuytelaars T, Van Cool L. SURF: Speeded up robust features [C]//European Conference on .Computer Vision(ECCV), Graz Austria:TUG and Univercity of Ljubljana, 2006, 3951: 404-417.
  • 7Bay H, Tuytelaars T; Van Cool L. Speeded-up robust features(SURF) [J]. Computer Vision and Image Understanding, 2008, 110(3): 346-359.
  • 8Neto H V, Nehmzow U. Automated exploration and inspection: Comparing two visual novelty detectors [J]. International Journal of Advanced Robotic Systems, 2005,2 (4) : 355-362.
  • 9Luo J, Oubong G. A comparison of SIFT, PCA-SIFT and SURF [J]. International Journal of Image Processing, 2009,3(4) : 143-152.
  • 10Tuyte T, Mikolajczyk K. Local Invariant Feature Detectors : A Survey. Foundations and Trends in Computer Graphics and Vision [M]. Delft, Netherlands:Now Publishers Inc., 2008.

共引文献121

同被引文献245

引证文献27

二级引证文献403

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部