期刊文献+

微流控实时荧光聚合酶链式反应成像非均匀性的校正 被引量:5

Nonuniformity correction for fluorescence imaging of microfluidic real-time PCR
下载PDF
导出
摘要 综合参考标样法和定标校正法的思想,提出了一种用于校正微流控实时荧光聚合酶链式反应(PCR)系统荧光成像非均匀性的"多目标像素区域定标线性校正"算法,以提高其检测结果的准确性。以与PCR荧光标记物SYBR Green光谱特性相似的荧光素钠溶液为样本,检测了11种不同浓度的均匀荧光素钠溶液受激发射荧光信号的强度,分析了各个目标像素区域荧光强度和荧光素钠溶液浓度之间的线性响应关系,采用两点定标校正方法计算了CCD各个目标像素区域的校正系数矩阵。实验表明,3种浓度荧光素钠溶液的成像均匀度分别从校正前的71.28%、72.01%、70.73%提高到校正后的77.49%、80.07%、90.64%;微流控四腔芯片中相同浓度的DNA样品在PCR扩增阶段的Ct值相对标准偏差由校正前的4.38%、1.94%、3.31%减小到校正后的2.44%、0.79%、1.31%,显著提高了微流控实时荧光PCR检测结果的准确性。 In combination of reference standard sampling and calibration methods, a multi-target area calibration linear correction algorithm was proposed to correct the nonuniformity of fluorescence de- tection of microfluidic Polymerase Chain Reaction(PCR) system and to improve the performance of the system. The fluorescein sodium solution with similar spectral characteristics to PCR fluorescence marker SYBR Green was used as the test sample, and the emission fluorescence intensities of eleven uniformity sodium {luorescein solutions with different concentrations were measured. The linear rela- tionship between fluorescence intensities and fluorescein sodium concentrations was analyzed and the correction coefficient matrix in each imaging target area on a CCD was calculated by a two-point linear correction algorithm. The results after correction show that the imaging uniformities in three different concentrations of sodium fluorescein solutions are improved respectively from 71. 28%, 72. 01%, 70.73% to 77.49%, 80.07%, 90. 64%. The relative standard deviations of Ct value for the same concentration DNA template are reduced respectively from 4. 38%, 1. 94%, 3.31% to 2. 44%, 0.79% cantly , 1.31%. These results indicate that the proposed nonuniformity correction algorithm signifi- improves the accuracy of microfluidic real-time PCR.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2013年第8期2161-2168,共8页 Optics and Precision Engineering
基金 国家863高技术研究发展计划资助项目(No.2011AA100704) 中国科学院合肥物质科学研究院院长基金资助项目(No.Y23J321121)
关键词 微流控 聚合酶链式反应(PCR) 成像非均匀 非均匀性校正 荧光检测 microfluidics Polymerase Chain Reaction(PCR) imaging nonuniformity nonuniformitycorrection fluorescence detection
  • 相关文献

参考文献20

  • 1ZHANG CH S,XU J L,MAW L,et al.PCR microfluidic devices for DNA amplification[J].Biotech nology Advances,2006,24 (3) : 243-284.
  • 2HEID C A,STEVENS J,LIVAK K J,et al.Real time quantitative PCR[J].Genome Research,1996,6(10):986-994.
  • 3AHMAD F,SEYRIG G,TOURLOUSSE D M,et al.A CCD-based fluorescence imaging system for real-time loop-mediated isothermal amplificationbased rapid and sensitive detection of waterborne pathogens on microchips[J].Biomed Microdevices,2011,13(5):929-937.
  • 4LI Y Y,ZHANG CH S,XING D.Integrated microfluidic reverse transcription-polymerase chain reaction for rapid detection of food-or waterborne pathogenic rotavirus[J].Anal.Biochem,2011,415(2):87-96.
  • 5PIERIK A,BOAMFA M,ZELST M V,et al.Real time quantitative amplification detection on a microarray:towards high multiplex quantitative PCR[J].Lab Chip,2012,12(10):1897-1902.
  • 6许金钩,王本尊.荧光分析法[M].第三版.北京:科学出版社,2007.
  • 7BUSTIN S A,BENES V,GARSON J A,et al.The MIQE guidelines:minimum information for publication of quantitative real-time PCR experiments[J].Clin Chem,2009,55(4):611-622.
  • 8WANG Y.Universal reference dye for quantitative amplification US: US,2012/0164690 A1[P].2012-01-28.
  • 9CHRISTIAN V T.Methods for increasing multiplex level by externalization of passive reference in polymerase chain reactions:WO,WO 2011/097424A1[P].2011-08-11.
  • 10朱宏殷,郭永飞,司国良.多TDICCD拼接相机成像非均匀性实时校正的硬件实现[J].光学精密工程,2011,19(12):3034-3042. 被引量:21

二级参考文献30

共引文献54

同被引文献49

  • 1陈英剑,胡成进,赵苗青.SYBR Green实时荧光定量PCR技术平台的建立[J].实用医药杂志,2004,21(11):997-999. 被引量:16
  • 2金龙,唐玉荣,张彦娥.一种基因芯片图像滤波混合法[J].农业网络信息,2006(8):25-28. 被引量:2
  • 3程红梅,彭于发,金芜军,贾士荣.一种快速、简便提取大豆油DNA的方法及转基因大豆油的检测[J].中国农业科学,2007,40(5):1069-1072. 被引量:20
  • 4严伟,胡松,吴钦章,唐小萍,佟军民.生物芯片图像微阵列偏转角度计算及样点分割算法[J].光电工程,2007,34(10):6-10. 被引量:4
  • 5Renzo Galanello, Antonio Oao. Alpha-thalassemia[J] Genet Med. ,2011,13(2) :83-88.
  • 6Etchegary H, Oappelli M, Potter B, et al. Attitude and knowledge about genetics and genetic testing[J]. Public Health Genomics,2010,]3(2) :80-88.
  • 7Saunders D. Curtis, Hoist Gregory L, Phaneuf Christopher R et al.Rapid, quantitative, reverse transcription PCR in a polymer microfluidic chip[J]. Biosensors and Bioelectron- ics, 2013,44: 222-228.
  • 8Roger D. Canales, Yuling Luo, James C. Willey, et al. E- valuation of DNA microarray results with quantitative gene expression platforms[J]. Nature Biotechnology, 2006,24 (9) : 1115-1122.
  • 9Ismail Emre Araci, Stephen R Quake. Microfluidic very large scale integration (mVLSI) with integrated microme- chanical valves[J]. Lab Chip, 2012, ]2 : 2803-2806.
  • 10Jochen Hoffmann,Martin Trotter, Felix von Stetten, et al. Solid-phase PCR in a picowell array for immobilizing and arraying 100 000 PCR products to a microscope slide [J]. Lab Chip,20]2,12:3049-3054.

引证文献5

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部