期刊文献+

离化靶中多脉冲强流电子束的不稳定性

Instabilities of multi-pulse intense electron beam in ionized target
下载PDF
导出
摘要 多脉冲强流电子束轰击轫致辐射靶,在靶面形成等离子体层,将对后续电子束脉冲的稳定性产生影响。从基本等离子理论出发,利用成熟的等离子体粒子模拟程序计算在不同等离子条件下电子束流的稳定性。模拟显示在无外场情况下,当等离子体与电子束的密度比小于1时,能量20MeV、束流强度2.5kA、焦斑1.5mm的电子束出现腊肠不稳定性,但相对靶面焦点区而言,束流稳定;当密度比在1~100时,箍缩不稳定性能够改善电子束的聚焦;当密度比在100~1000时,扭曲不稳定性起主导作用,靶面焦点区电子束流仍然稳定;当密度比大于1000后,成丝不稳定性破坏束流,电子束无法在靶面聚焦。 In multi-pulse X ray photography,plasma created by earlier pulses will affect the up-coming later ones,and cause concerns on the stability of the beams.Based on the basic theory of plasma,we simulate the beam-plasma interaction and address the instability problems in different plasma density scenarios.In external magnetic field free situation,simulation shows the beam(20 MeV,2.5 kA,1.3 mm) exhibits different instability properties as the density of the plasma changes.For the density ratio of beam-plasma being less than 1,sausage instability appears,but the beam is generally undisturbed and the hotspot is good.For the density ratio of beam-plasma being between 10 and 100,the pinch effect of the plasma improves the focusing.Filamentation instabilities become prominent as the density ratio of beam-plasma is greater than 1000,the beam emittance grows rapidly,and the target hotspot is dispersed.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2013年第9期2443-2447,共5页 High Power Laser and Particle Beams
基金 国家自然科学基金委员会-中国工程物理研究院联合基金项目(10976001) 中国工程物理研究院科学技术发展基金项目(2011B0402011) 国家自然科学基金项目(10935001)
关键词 不稳定性 箍缩 离化靶 多脉冲电子束 束靶相互作用 instability pinch ionized target multi-pulse electron beam beam-target interaction
  • 相关文献

参考文献21

  • 1Peratt A L. Advances in numerical modeling of astrophysical and space plasma[J]. Astrophysics and Space Science, 1996, 242(1/2) : 93- 163.
  • 2Haruki T, Yousefi H R, Masugata K, et al. Simulation of high-energy particle production through sausage and kink instabilities in pinched plasma discharges[J]. Phys Plasmas, 2006, 13: 082106.
  • 3Welch D R, Rose D V, Thoma C, et al. Kinetic simulation of thermonuclear-neutron production by a 107-A deuterium Z pineh[J]. Phys Plasmas, 2010, 17 : 072702.
  • 4Khudik V, Kaganovich I, Shvets G. Halo formation and self-pinching of an electron beam undergoing the Weibel instability[J]. Phys Plas- mas, 2012, 19: 103106.
  • 5Bret A, Firpo M C, Deutsch C. Characterization of the initial filamentation of a relativistic electron beam[J]. Phys Rev Lett, 2005, 94: 115002.
  • 6Honda M, Meyer-ter-Vehn J, Pukhov A. Collective stopping and ion heating in relativistic-electron-beam transport for fast ignition[J]. PhysRev Lett, 2000, 85(10): 2128-2131.
  • 7Bret A, Gremillet L, Benisti D. Exact relativistic kinetic theory of full unstable spectrum of an electron-beam-plasma system with Maxwell- Jtittner distribution functions[J]. Phys Rev E, 2010, 81: 036402.
  • 8Rosenzweig D, Schoessow J B, Cole P, et al. Demonstration of electron beam self-focusing in plasma wake-fields[J]. Phys Fluids B, 1990, 2(6) : 1376-1383.
  • 9Bret A, Gremillet L, Dieckmann M E. Multidimensional electron beam-plasma instabilities in the relativistic regime[J]. Phys Plasmas, 2010, 17: 120501.
  • 10朱隽,章林文,龙继东,李劲,禹海军,尚长水,李剑.强流脉冲电子束轰击下回喷靶材速度测量与数值模拟[J].强激光与粒子束,2005,17(4):599-602. 被引量:5

二级参考文献26

  • 1Wilks S C et al 1992 Phys. Rev. Lett. 69 1383 .
  • 2Tochitsky S Y et al 2004 Phys. Plasmas 11 2875.
  • 3Kodama R et al 2002 Nature 418 922.
  • 4Alfven H 1939 Phys. Rev. 55 425.
  • 5Weibel E S 1959 Phys. Rev. Lett. 2 83.
  • 6Sentoku Y et al 2002 Phys. Rev. E 65 046408.
  • 7Sentoku Yet al 2003 Phys. Rev. Lett. 90 155001.
  • 8Zheng C Y et al 2004 Relativistic electron beam instabilities in laser dense plasma interaction, submission.
  • 9Brunel 1987 Phys. Rev. Lett. 59 52.
  • 10Pukhov A 2003 Rep. Prog. Phys. 66 47.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部