期刊文献+

基于全局与局部模型相互制约及具有模型不确定性评估的车道线检测方法 被引量:1

Lane markings detection approach based on interaction of global and local models and with uncertainty evaluation
下载PDF
导出
摘要 针对无人驾驶车辆,提出了一种新的基于全局与局部模型相互制约及具有模型不确定性评估的车道线检测方法.该方法基于车道线的全局与局部模型,通过它们之间的相互制约与影响,有效地实现了视觉测量噪声的过滤与全局信息的获取.进一步利用对检测结果或全局模型的不确定性程度进行评估,不仅可稳定可靠地检测到车道线,而且还可为多源异构传感器之间的信息融合提供基础支撑.面向高速公路进行了大量的真实道路实验.实验结果表明,利用所提方法获得的预瞄点,其平均侧向偏差小于0.3 m,平均角度偏差小于0.03°,能够满足无人驾驶车辆在高速公路上进行自主行驶的需要. This paper proposes a novel lane markings detection approach for unmanned ground vehicle(UGV).The approach is based on the interaction of global and local models w ith uncertainty evaluation.The elimination of visual measurement noise w ith lane markings can be effectively accomplished and the global information can be reliably acquired through constrains and interaction betw een the local model of lane markings and the global one.Moreover,the uncertainty evaluation of global lane markings model can be used to improve the stability of lane markings detection and to further provide the basic support for the information fusion of heterogeneous multi-sensors.Many experiments on real roads under highw ay environments are carried out.The experimental results show that the average lateral deviation at the preview point achieved by using the proposed approach is less than 0.3 m and the average azimuth is not greater than 0.03°.This can fulfill the need of the UGV driving on the express w ay by itself.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第A01期1-6,共6页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(90820305 60775040)
关键词 车道线检测 全局模型 局部模型 不确定性评估 无人驾驶车辆 lane markings detection global model local model uncertainty evaluation unmanned ground vehicle
  • 相关文献

参考文献14

  • 1Crisman J.UNSCARF:a color vision system for the detection of unstructured roads[C]//Proceedings of IEEE International Conference on Robotics and Automation.Sacnunento,CA,USA,1991:2496-2501.
  • 2Crisman J D.SCARF:a color vision system that tracks road sand intersections[J].IEEE Transactions on Robotics and Automation,1993,9(1):49-58.
  • 3McCall J C,Trivedi M M.Video-based lane estimation and tracking for driver assistance:survey,system,and evaluation[J].IEEE Transactions on Intelligent Trans-portation Systems,2006,7 (1):20-37.
  • 4Kluge K,Thorpe C.The YARF system for vision-based road following[J].Mathmatical and Computer Modelling,1995,22(4/5/6/7):213-233.
  • 5Kluge K.Extracting road curvature and orientation from image edge points without perceptual grouping into features[C]//Proceedings of the Intelligent Vehicles' 94Symposium.Paris,France,1994:109-114.
  • 62hao Kun,Meuter M,Nunn C,et al.A novel multilane detection and tracking system[C]//Proceedings of 2012 IEEE Intelligent Vehicles Symposium.Madrid,Spain,2012:1084-1089.
  • 7Isard M,Black A.CONDENSATION-conditional density propagation for visual tracking[J].Internation-al Journal of Computer Vision,1998,29(1):5-28.
  • 8Sehestedt S,Kodagoda S,Alempijevic A,et al.Robust lane detection in urban environments[C]//Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.San Diego,CA,USA,2007:123-128.
  • 9Yao Wentao,Deng Zhidong,Chen Zhenhua.A global and local condensation for lane tracking[C]//Proceedings of 2012 International IEEE Conference on Intelligent Transportation Systems (ITSC).Anchorage,AK,USA,2012:276-281.
  • 10Wang Yanqing,Chen Deyun,Shi Chaoxia et al.Vision-based road detection by Monte Carlo method[J].Information Technology Journal,2010,9(3):481-487.

同被引文献24

引证文献1

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部