摘要
以矿井通风网络的总功率最小为目标建立了矿井通风网络的非线性优化数学模型.针对模型中风量平衡和风压平衡的约束条件,采用外点罚函数法将其转化模型目标中的惩罚项.面向约束转化后模型,采用文化粒子群优化算法实现寻优.该算法在种群空间采用粒子群优化算法实现粒子进化;通过构建上层信度空间来挖掘进化过程中优势粒子的隐含信息,并以知识形式加以保存;最终通过影响函数,使知识作用于种群空间实现对粒子进化的引导.面向一个典型通风网络结构与其他智能优化方法优化结果比较可知,基于该算法获得的调风方案具有较小的总能耗,且能满足通风网络的需风量需求.
Taking the minimum total power of the mine ventilation network as the objective,a nonlinear mathematical model for optimizing the structure of the mine ventilation netw ork is established.Tw o constraints,w hich are the balance conditions for the air quantity and the air pressure,are converted to the penalty part in the model by exterior point penalty function methods.In order to optimize the converted model,the cultural particle sw arm optimization algorithm is adopted.In the algorithm,particle sw arm optimization is introduced to realize the essential evolution process in the population space.The belief space is constructed to extract effective implicit information during the evolution process.The information is stored as know ledge and used to guide the particles' evolution in population space by the influence function.Taking a typical mine ventilation netw ork as an example,simulation results indicate that compared w ith other intelligent optimization methods,the optimal scheme obtained by the cultural particle sw arm optimization algorithm has the minimum total energyconsuming,w hich satisfies the air requirements of the mine ventilation netw ork.
出处
《东南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2013年第A01期48-53,共6页
Journal of Southeast University:Natural Science Edition
基金
江苏省自然科学基金资助项目(BK2010183)
江苏省校长及青年骨干教师境外研修资助项目(2011)
关键词
矿井通风网络
文化粒子群优化算法
非线性优化
外点罚函数法
mine ventilation system
cultural particle swarm optimization
nonlinear optimization
exterior point penalty function