期刊文献+

自适应Kalman滤波的改进及其在SINS/GPS组合导航中的应用 被引量:8

Improvement of adaptive Kalman filtering algorithm and its application in SINS / GPS integrated navigation
下载PDF
导出
摘要 为解决自适应Kalman滤波中存在的问题,综合采用对观测粗差和滤波结果粗差进行判断、对系统噪声方差阵扩零和修改自适应方程减去项等措施对算法进行了改进.观测粗差的判断可以避免观测奇异,提高滤波稳定性;对滤波结果粗差的判断可避免矩阵求逆时的奇异现象;对状态噪声方差阵扩零,可保证在不影响滤波精度的情况下解决滤波过程中矩阵维数不对应的问题;修改自适应方程减去项,虽然牺牲了一定的精度,但可保证求解状态噪声协方差阵Q和观测噪声协方差阵R的等式右边非负定,从而保证Q和R的非负定.将上述改进后的自适应Kalman滤波算法应用到SINS/GPS组合导航中,仿真结果表明上述改进有效地提高了自适应Kalman滤波的稳定性,且保证了滤波的精度. This paper uses four measures to improve the performance of adaptive Kalman filter algorithm,including judging observation outliers and outliers of the filter algorithm,extending zero to system noise variance matrix and modifying the deduction in adaptive filtering.Judging observation outliers can eliminate singular values in observation and improve the stability of the filter algorithm.Judging outliers of the filtering algorithm can avoid the excessively small values in matrix w hich may result in the outlier during matrix inversion.Extending zero to system noise variance can settle the incoordination of matrix dimension.Modifying the deduction in adaptive filtering can guarantee the right side of the equations of solving noise covariance Q and observation of noise covariance R be nonnegative,so as to guarantee Q and R be nonnegative,although it sacrifices certain accuracy.The above improved adaptive Kalman filtering algorithm is applied to the SINS / GPS(strapdow n inertial navigation system / global positioning system) integrated navigation,simulation results demonstrate that the combined four measures effectively improve the stability of the adaptive Kalman filtering,and ensure the accuracy of the filter.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第A01期89-92,共4页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(61174094 60904064) 天津自然科学基金资助项目(10JCZDJC15900) 教育部博士点基金资助项目(20090031110029)
关键词 Kalman滤波算法 组合导航 统计特性 自适应滤波 Kalman filter integrated navigation statistical properties adaptive filter
  • 相关文献

参考文献8

二级参考文献22

  • 1赵龙,陈哲.新型联邦最小二乘滤波算法及应用[J].自动化学报,2004,30(6):897-904. 被引量:11
  • 2宋迎春.GPS动态导航定位的当前统计模型与自适应滤波[J].湖南人文科技学院学报,2005,22(5):7-9. 被引量:9
  • 3张锐,张长虹,陈利超.INS/GPS导航中联邦卡尔曼滤波算法[J].战术导弹控制技术,2006(1):52-55. 被引量:9
  • 4赵龙,陈哲.最小二乘滤波及其在INS/双星系统中的应用[J].压电与声光,2006,28(4):483-485. 被引量:4
  • 5金青华.舰船综合导航数据处理[M].大连:海军舰艇学院出版社,1995..
  • 6WU Y X,HU D W,WU M P,et al.Unscented kalman filtering for additive NOISE case:augmented versus nonaugmented signal processing letters[J].IEEE 2005,12(5):357-360.
  • 7LIU J,SHI Y B,ZHANG,W D.Micro inertial measu-rement unit based integrated velocity strapdown testing system[J].Sensors and Actuators,A:Physical,2004,112(1):44-48.
  • 8WANG B,WANG J,WU J P,et al.Study on adaptive GPS/INS integrated navigation system.Intelligent Transportation System[J].Proceedings,IEEE,2003(2):12-15.
  • 9YANG Y,MIAO L J.GDOP results in all-in-view positioning and in four optimum Satellites positioning with GPS PRN codes ranging[C].Position Location and Navigation Symposium,2004:723-727.
  • 10HUANG Y,XU K K,HAN J Q,et al.Flight control design using extended state observer and non-smooth feedback[C].Proceedings of the 40th IEEE Conference on Decision & Control,Orlando,Florida,December,2001:223-228.

共引文献88

同被引文献75

引证文献8

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部