期刊文献+

线性系统在非线性等式约束下的集员卡尔曼滤波 被引量:1

Set-membership Kalman filtering for linear systems with nonlinear equality constraints
下载PDF
导出
摘要 为了解决运行系统要求的100%估计包含真实最小域的需要和计算机的实时计算问题,使用集员卡尔曼滤波算法解决非线性状态约束.采用最小迹椭球算法对状态向量的椭球域进行更新,同时分别在预测和滤波的2个阶段用投影的方法把没有约束的状态估计投影到有约束的状态估计表面来处理约束问题.最后将所设计的集员卡尔曼滤波器应用到汽车追踪实例中.实验结果表明:采用所提算法的系统只是在初始值有比较大的误差,在后续的跟踪过程中都能在最大最小界之内跟踪上真实值.所提算法相比于传统的卡尔曼算法,其误差能迅速减小.实例仿真结果证明了所提方法的可行性和有效性. The set-membership Kalman filtering is proposed to solve the problems of the system requiring 100% confidence to be estimated and the real-time calculation for systems w ith nonlinear equality constraints.The algorithm of the minimum trace ellipsoid is adopted to optimize the stage of time updating.At the steps of prediction and filter,the unconstrained set-membership Kalman filtering is projected onto the state constraint surface to deal w ith the constraint problem.The proposed algorithm is tested on a vehicle tracking application.The results show that the true values by using the constrained set-membership filter always reside between their upper bounds and lower bounds during the later tracing,despite the original values have great error which rapidly decreases compared to the Kalman filtering.The simulation results show that the proposed method is available and effective.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第A01期179-182,共4页 Journal of Southeast University:Natural Science Edition
基金 福建省自然科学基金资助项目(2012J01257)
关键词 非线性等式约束 最小迹椭球 集员卡尔曼滤波 nonlinear equality constraint minimum trace ellipsoid set-membership Kalman filtering
  • 相关文献

参考文献16

  • 1Yang F,Li Y.Set-membership filtering for discretetime systems with nonlinear equality constraints[J].IEEE Transactions on Automatic Control,2009,54(10):2480-2486.
  • 2杨海斌.一种改进的集员滤波仿射投影算法[J].计算机仿真,2011,28(7):236-239. 被引量:3
  • 3毛瑞石,李忠,邓新文.基于集员滤波的鱼雷声纳子带自适应滤波算法[J].四川兵工学报,2012,33(5):35-37. 被引量:3
  • 4Durieu C,Loron L,Sedda E,et al.Fault detection of an induction motor by set-membership filtering and Kalman filtering[EB/OL].(1999-08)[2013-05].http//:www.utc.fr/lec/Publications/articles/1999/ecc_ Durieu.pdf.
  • 5Hoix S,Adort O,Ragot J.Bounding approach to the diagnosis of a class of uncertain static systems[J].Automatica,2006,42(10):1553-1562.
  • 6Hoix S,Gentil S.Causal strategy for set-membership fault diagnosis[C]//Proceedings of 39th IEEE Conference on Decision and Control.Sydney,Australia,2000:2627-2632.
  • 7Patrick L.Convex set theoretic image recovery by extrapolated iterations of parallel subgradient projections[J].IEEE Transactions on Image Processing,1997,6(4):493-506.
  • 8Bemporad A,Garulli A.Output-feedback predictive control of constrained linear systems via set-member-ship state estimation[J].International Journal of Control,2000,73(8):655-665.
  • 9Krolikowski A.Sequential and control for boundednoise ARX systems[J].IEEE Transactions on Automatic Control,2001,46 (2):325-331.
  • 10Morrell D R,Stifling W C.Set-values filtering and smoothing[J].IEEE Transactions on Systems,Man and Cybernetics Society,1991,21 (1):184-193.

二级参考文献14

  • 1M Tanaka, et al. A fast projection algorithm for adaptive filtering [ J ]. IEICE Trans. on Fundamentals of electronics, communica- tions and computer sciences, 1995 ,E78-A(10) : 1355-1361.
  • 2S Werner and P S R Diniz. Set-membership affine projection algo- rithm[J]. Signal Processing Letters, 2001,8(6) :231-235.
  • 3S R Paulo, Diniz, P Rozalvo, Stefan Werner. Set-membership af- fine projection algorithm for echo cancellation[ C]. 2006 IEEE In- ternational Symposium on Circuits and Systems, Kos Greece, 2006.405 -408.
  • 4S GoUamudi, S Nagaraj, Y F Huang. Set-membership filtering and a set-membership normalized LMS algorithm with an adaptive step size[J]. IEEE Signal Process. Lett., 1998,(5) :111-114.
  • 5Kufluyll Do^νgancay, O^vgnz Tanrlkulu. Adaptive Filtering Algo- rithms With Sdective Partial Update [ J ]. IEEE Transactions on Circuits and Systems-Ⅱ: Analog and Digital Signal Processing, 2001,48 ( 8 ) :762-769.
  • 6Patrick A Naylor, Andy, W H Khong. Affine Projection and Re- cursive Least Squares Adaptive Filters Employing Partial Updates [C]. 38th Asilomar Conference on Signals, Systems and Comput- ers, Pacific Grove USA, 2004: 950-954.
  • 7I Pitas. Fast algorithms for running ordering and max/min calcula- tion [ J ]. IEEE Trans. on Circuits and Systems, 1989,36 ( 6 ) :795 -804.
  • 8Gay S L, Tavathia S. The fast affine projection algorithm [ C ]. Proc. ICASSP' 95, Detroit USA, 1995:3023 - 3026.
  • 9Tanaka M, Kaneda Y, Makino S, et al. A fast projection al- gorithm for adaptive filtering [ J ]. IEICE Trans. on Funda- mentals of eleetronies, communications and computer sci- ences. 1995, E78 - A(10) : 1355 - 1361.
  • 10Hun Choi, Hyeon-Deok Bae. Subband Affine Projection Al- gorithm for Acoustic Echo Cancellation System [ J ]. EUR- ASIP Journal on Advances in Signal Processing,2007:146 - 157.

共引文献3

同被引文献10

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部