期刊文献+

云存储部署优化的进化算法设计 被引量:3

Design of evolutionary algorithm for the optimization of cloud storage deployment
下载PDF
导出
摘要 针对云计算环境下的云存储部署规划优化问题,全文研究和提出了一种进化算法并进行了求解.首先基于对象存储方法,设计了三层架构云存储模型.在建立的模型中,将云存储部署抽象为多目标优化调度问题,针对现有粒子群优化算法或遗传算法在解决这一优化调度问题过程中出现的收敛速度及调度效率等方面的不足,将2种算法进行有效融合,设计了混合进化算法来进行求解,讨论了进化算法的优化设计过程.同时,在云计算仿真平台CloudSim上,对所提出的优化算法进行仿真实验,并对云存储中负载均衡等性能指标的改善程度进行了检测.结果表明,所提出的混合进化算法有效实现了云存储的优化部署任务,与其他进化算法相比,能对性能指标实现更优配置. Aiming at the optimization of cloud storage deployment in cloud computing environment,an evolutionary algorithm is proposed.Firstly,a cloud storage model w ith three-tier structure is designed by using the object storage method.In this model,the cloud storage deployment is defined as a multi-objective optimization problem.This problem can be solved by using the traditional particle sw arm optimization(PSO) algorithm or the genetic algorithm(GA).How ever,the convergence speed and the scheduling efficiency are not satisfactory.To overcome the above limitation,a hybrid evolutionary algorithm is presented by combining PSO and GA.The optimization design process of this evolutionary algorithm is analyzed.Moreover,the proposed algorithm is tested on the simulation platform CloudSim.Meanw hile,the improvement of main performance index such as load balance is evaluated.The experimental results show that the proposed algorithm efficiently improves the performance of cloud storage deployment.Compared w ith other approaches,this evolutionary algorithm can achieve better configuration of performance index.
作者 李皓 罗熊
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第A01期202-205,共4页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(61174103 61174069 61004021) 中央高校基本科研业务费专项资金资助项目(FRF-TP-11-002B) 材料领域知识工程北京市重点实验室2012年度阶梯计划资助项目(Z121101002812005)
关键词 云存储 粒子群优化 遗传算法 cloud storage particle swarm optimization genetic algorithm
  • 相关文献

参考文献9

  • 1Gurumurthi S.Architecting storage for the cloud computing era[J].IEEE Micro,2009,29(6):68-71.
  • 2Itaai W,Kayssi A,Chehab A.Privacy as a service:privacy-aware data storage and processing in cloud computing architectures[C]//Proceedings of IEEE 30th International Conference on Distributed Computing Systems Workshops.Chengdu,China,2009:711-716.
  • 3陈晓华,李春芝,俞坚奇.虚拟主机云存储系统整数规划模型及最优化分配算法[J].电信科学,2011,27(1):89-94. 被引量:5
  • 4Wu J,Ping L,G-e X,et al.Cloud storage as the infrastructure of cloud computing[C]//Proceedings of International Conference on Intelligent Computing and Cognitive Informatics.Kuala Lumpur,Malaysia,2010:380-383.
  • 5Divya K,Jeyalatha S.Key technologies in cloud computing[C]//Proceedings of Intemational Conference on Cloud Computing Technologies,Applications and Management.Dubal,The United Arab Emirates,2012:196-199.
  • 6Ali M F,Barnawi A M,Bashar A.Performance analysis framework to optimize storage infrastructure for cloud computing[C]//Proceedings of International Conference on Innovative Computing Technology.Casablanca,The Kingdom of Morocco,2012:285-290.
  • 7杨星,马自堂,孙磊.云环境下基于改进蚁群算法的虚拟机批量部署研究[J].计算机科学,2012,39(9):33-37. 被引量:18
  • 8Wei Y,Tian L.Research on cloud design resources scheduling based on genetic algorithm[C]//Proceedings of International Conference on Systems and Informatics.Yantai,China,2012:2651-2656.
  • 9The Cloud computing and Distributed Systems Laboratory,University of Melbourne.CloudSim:a framework for modeling and simulation of cloud computing infrastructures and services[EB/OL].(2012-01)[2013-01].http://www.cloudbus.org/cloudsim/.

二级参考文献25

  • 1刘朝斌,谢长生,张琨.存储网络虚拟化关键技术的研究与实现[J].计算机科学,2004,31(5):38-40. 被引量:18
  • 2韩德志.网络存储技术及其进展[J].计算机应用研究,2005,22(7):5-8. 被引量:20
  • 3田敬,代亚非.P2P持久存储研究[J].软件学报,2007,18(6):1379-1399. 被引量:52
  • 4Garth A, Gibso N. Network attached storage architecture.Communications of the ACM ,2000,43(11):37~45.
  • 5IBM Redbooks.Introduction to storage area network.http://www. redbooks.ibm.com/redbooks/pdfs/sg245470.pdf,2006.
  • 6Nishan System White Paper.Storage over IP (SoIP) framework-an introduction.http://downloads.lightreading.com/storctr/nishan/ SolP%20Framework.pdf,2006.
  • 7Mesnier M,Ganger G R,Riedel E.Object-based storage:pushing more functionality into storage:pushing more functionality into storage.Potentials,IEEE,2005,24(2) :31 ~34.
  • 8Mike Mesnier,Gregory RGanger,Erik Riedel.Object -based storage.IEEE Communication Magazine,2003,(8):84N90.
  • 9James Broberg,Rajkumar Buyya,Zahir Tari.MetaCDN:hamessing "storage clouds" for high performance content delivery.Joumal of Network and Computer Applications, 2009,(32): 1012-1022.
  • 10Gillen A, Broussard F W, Perry R, et al. Optimizing infrastruc- ture:the relationship between it labor costs and best practices for managing the windows desktop[EB/OL], http://download. microsoft, com/download/a/4/4/a4474bOc-57dS-41a2-afe6-3203 7fa93ea6/II)C_windesktop_IO_whitepaper. pdC. 2007.

共引文献21

同被引文献24

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部