期刊文献+

基于深度优先判定聚类的DNA序列模体发现

DNA Sequences Motif Discovery Based on DFD Clustering
原文传递
导出
摘要 提出一种数据挖掘方法 MMHC来求解DNA序列模体。首先使用基于种子的错配聚类形成候选模体类,然后使用基于相对熵及聚类复杂度的深度优先判定(depth first determination,DFD)算法识别真正的模体类,最后使用保守区扫描法(conservation region scanning,CRS)及最大后验概率保值过滤法(MAP value-preservation filtering,MVPF)优化模体类。在两类DNA序列数据集上,将MMHC与三种经典的模体发现方法 MEME、AlignACE和SOMBRERO进行了对比试验。结果表明:对于大多数数据集,MMHC方法无论是在发现模体的可靠性及准确性方面,还是在反映背景种类的聚类结构方面,都明显优于三种经典的模体发现方法。 A data mining method MMHC was given to solve DNA sequences motifs.The seed-based mismatch clustering was used to form the candidate motif clusters.Then the depth first determination(DFD) algorithm based on relative entropy and cluster complexity was proposed to identify the true motif clusters.Finally,the conservation region scanning(CRS) and MAP value-preservation filtering(MVPF) were given to optimize motif clusters.The experiment was conducted by testing MMHC method and comparing its performance with other three classic motif discovery methods MEME,AlignACE and SOMBRERO on two classes of DNA sequences datasets.Experimental results show the superiority of MMHC method over the three classic motif discovery methods in reliability,precision and the reflection of the cluster structure of the background species for most of the DNA sequences datasets.
出处 《生物物理学报》 CAS CSCD 北大核心 2013年第5期384-394,共11页 Acta Biophysica Sinica
基金 四川省教育厅自然科学研究项目(12ZB070)~~
关键词 模体发现 聚类分析 深度优先判定 保守区扫描 Motif discovery Clustering analysis Depth first determination Conservation region scanning
  • 相关文献

参考文献2

二级参考文献41

  • 1Asur S, Ucar D, Parthasarathy S. An ensemble framework for clus- tering protein - protein interaction networks [ J ]. Bioinformatics, 2007, 23 ( 13 ) : i29 - i40.
  • 2Enright A J, Dongen S V, Ouzounis C A. An efficient algorithm for large - scale detection of protein families [ J ]. Nucleic Acids Re- search, 2002, 30(7): 1575- 1584.
  • 3Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software en- vironment for integrated models of biomolecular interaction networks [ J]. Genome Research,2003,13 ( 11 ) :2498 - 504.
  • 4Adamcsek B, Palla G, Farkas I, et al. CFinder: locating cliques and overlapping modules in biological networks [ J ]. Bioinformat- ics,2006, 22(8) : 1021 - 1023.
  • 5Mewes H W, Amid C, Arnold R, et al. MIPS: analysis and annota- tion of proteins from whole genomes[ J]. Nucleic Acids Research , 2004, 32:I341 -D44.
  • 6Issel - Tarver L, Christie K R, Dolinski K, et al : Saccharomyces Genome Database [ J ]. Methods Enzymol,2002 ,350 :329 - 346.
  • 7Breitkreutz B J, Stark C, Tyers M. The GRID: the General Res- pository for Interaction Datasets [ J ]. Genome Biology, 2003, 4 (3) :R23.
  • 8Min Li,Jianxin Wang and Jian' er Chen. A Fast Agglomerate Algo- rithm for Mining Functional Modules in Protein Interaction Net- works. Proceedings of the 2008 International Conference on Bio - Medical Engineering and Informatics [ J]. IEEE press ,2008,3 -7.
  • 9Altaf- UI - Amin M, Shinbo Y, Mihara K, et al. Developmentand implementation of an algorithm for detection of protein comple- xes in large interaction networks [ J ]. BMC Bioinformatics, 2006, 7:207.
  • 10Luo F, Yang Y, Chen C F, et al. Modular organization of protein interaction networks [ J ]. Bioinformatics, 2007, 23 ( 2 ) : 207 - 214.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部