期刊文献+

脂肪族芥子油苷侧链修饰酶基因FMO_(GS-OX4)表达模式分析 被引量:1

Expression Pattern of FMO_(GS-OX4),a Biosynthetic Gene Involved in Aliphatic Glucosinolate Side-chain Modification
下载PDF
导出
摘要 芥子油苷是一类由氨基酸衍生而来的、在植物抗生物胁迫防御性反应中起重要作用的次生代谢产物,其生物活性与侧链结构密切相关。拟南芥中有5个黄素单氧化酶FMOGS-OX1-5具有催化芥子油苷侧链上硫原子氧化的活性,使甲基硫烷芥子油苷转变为甲基亚磺酰烷芥子油苷。前期研究工作表明,在5个FMOGS-OX基因缺失突变体中,除了fmogs-ox4外均表现出芥子油苷侧链结构变化的表型。为了深入揭示FMOGS-OX4的表达特性和它对芥子油苷侧链的修饰作用,利用GFP和GUS为报告基因,系统地分析了FMOGS-OX4在不同组织中的表达情况。结果表明FMOGS-OX4主要在花梗、叶片及角果的维管组织中表达,在正常生长条件下,FMOGS-OX4表达的空间位置与芥子油苷的分布不重叠,因而,酶与底物的分离可能是fmogs-ox4没有明显表型的主要原因。 Glucosinolates(GSLs)are amino acid-derived secondary metabolites,which play an important role in biotic defense reactions in plants.The bioactivity of GSLs is closely related with its chain structure.There are five Flavin-containing Monooxygenase(FMO)enzymes,FMOGS-OX1-5,involved in GSL biosynthesis catalyzing the S-oxygenation from Methylthioalkyl GSLs to Methylsulfinylalkyl GSLs.Our previous work showed that all fmogs-ox mutants,except fmogs-ox4,presented altered GSLs phenotypes.To reveal the expression characteristics and functions in GSLs biosynthesis and chain structure modification,GFP and GUS were used as reporter genes,expression pattern of FMOGS-OX4 in different tissue was analyzed and results showed that FMOGS-OX4 was expressed mainly in the vascular tissue of the leaf,stem and silique.Under normal conditions,spatial distribution of FMOGS-OX4 did not overlap with the distribution of its substrates,which was considered as the reason why fmogs-ox4 lacked altered GSLs phenotype.
出处 《植物科学学报》 CAS CSCD 北大核心 2013年第4期406-414,共9页 Plant Science Journal
基金 黑龙江省高等学校科技创新团队建设计划项目(2011TD005) 黑龙江省留学归国科学基金项目(LC2009C31)
关键词 拟南芥 脂肪族芥子油苷 黄素单氧化酶 硫氧化 组织定位 Arabidopsis thaliana Aliphatic glucosinolates FMOGS-OX4 S-oxygenation Tissue localization
  • 相关文献

参考文献30

  • 1Lee S, Kaminaga Y, Cooper B, Pichersky E, Dudareva N, Chappie C. Benzoylation and si- napoylation of glucosinolate R-groups in Arabidop- sis[J]. Plant J, 2012, 72(3). 411-422.
  • 2Fahey J W, Zalcmann A T, Talalay P. The chemi- cal diversity and distribution of glucosinolates and isothiocyanates among plants [ J ]. Phytochemis- try, 2001, 56: 5-51.
  • 3Kliebenstein D J, Gershenzon J, MitchelI-Oids T. Comparative quantitative trait loci mapping of ali- phatic, indolic and benzylic glucosinolate produc- tion in Arabidopsis thaliana leaves and seeds [ J ]. Genetics, 2001, 159(1 ) : 359-370.
  • 4Tierens K F, Thomma B P, Brouwer M, Schmidt d, Kistner K, Porzel A, Mauch-Mani B, Cam- mue B P, Broekaert W F. Study of the role of an- timicrobial glucosinolate-derived isothiocyanates in resistance of Arabidopsis to microbial pathogens [J]. Plant Physiol, 2001, 125(4). 1688-1699.
  • 5程坤,杨丽梅,方智远,刘玉梅,庄木,张扬勇,孙培田.十字花科植物中主要硫代葡萄糖苷合成与调节基因的研究进展[J].中国蔬菜,2010(12):1-6. 被引量:26
  • 6袁高峰,陈思学,汪俏梅.芥子油苷及其代谢产物的生物学效应研究与应用[J].核农学报,2009,23(4):664-668. 被引量:19
  • 7Fahey J W, Haristoy X, Dolan P M, Kensler T W, Scholtus I, Stephenson K K, Talalay P, Loz- niewski A. Sulforaphane inhibits extracellular, in- tracellular, and antibiotic-resistant strains of heli- cobacter pylori and prevents benzol a] pyrene-in- duced stomach tumors [ J 1. Proc Natl Acad Sci USA, 2002, 99(11). 7610-7615.
  • 8Rose P, Huang Q, Ong C N, Whiteman M. Broccoli and watercress suppress matrix metallo- proteinase-9 activity and invasiveness of human MDA-MB-231 breast cancer cells[ J ]. Toxicology Appl Pharmacol, 2005, 209 (2) : 105-113.
  • 9Talalay P, Fahey J W, Healy Z R, Wehage S L, Jenedict A L, Min C, Dinkova-Kostova A T. Sul- foraphane mobilizes cellular defenses that protect skin against damage by UV radiation [ J ]. Proc Nail Acad Sci USA, 2007, 104 ( 44 ) : 17500 - 17505.
  • 10Schlaich N L. Flavin-containing monooxygenases in plants, looking beyond detox[J]. Trends Plant Sci, 2007, 12(9): 412-418.

二级参考文献88

共引文献41

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部