期刊文献+

制备肿瘤血管生成双靶点RGD10-NGR9-超顺磁性纳米氧化铁

Preparation ofα_νβ_3 integrin and aminopeptidase N dual-targeting RGD10-NGR9-superparamagnetic iron oxide
下载PDF
导出
摘要 目的构建新型肿瘤血管生成靶向双靶点RGD10-NGR9-超顺磁性氧化铁纳米颗粒,并检测其物理性质。方法设计合成双靶点RGDl0-NGR9杂合肽,以固相合成法异硫氰酸荧光素(FITC)标记杂合肽,检测其与人脐静脉内皮细胞的体外结合能力。采用共沉淀法制备核芯粒径8~12nm的超顺磁性氧化铁,包覆葡聚糖。以环氧氯丙烷活化葡聚糖,共价耦联靶向多肽,制备靶向多肽网状交联葡聚糖一超顺磁性氧化铁复合粒子。采用透射电子显微镜观测粒子大小、x射线衍射仪测试粒子晶型及组成,红外光谱仪分析粒子表面包覆物质表征,纳米粒度仪测定Zeta电位,振动样品磁强计仪测定磁化强度。结果双靶点杂合肽FITC—RGDl0-NGR9与人脐静脉内皮细胞有良好的体外结合能力。成功制备出肿瘤双靶点RGDl0-NGR9-超顺磁性氧化铁,电镜观测近似圆球形,总粒径约30nm。经振动样品磁强计仪测定,70℃时,复合粒子的饱和磁化强度为53.54emu/g,无磁滞现象,有超顺磁性,Zeta电位-60.9mV。结论成功制备出RGDl0一NGR9-超顺磁性氧化铁,其物理性质稳定,具有肿瘤血管生成靶向性。 Objective To construct angiogenesis-specific RGD10-NGR9 dual-targeting superparamagnetic iron oxide nan- oparticles, and to observe the physical properties. Methods Dual-targeting peptides RGD10-NGR9 were designed and syn- thesized. Fluorescence labeled RGD10 NGR9 peptides were synthesized by incorporating flourescein iso-thiocyanate (FITC) into peptides. Human umbilical vein endothelia cells (HUVEC) were incubated with FITC labeled peptides and subse- quently tested by inverted microscope. Ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles with narrow size distribution having average diameters of 8--12 nm were synthesized by co-precipitation chemical method, and the surface was modified to be hydrophilic by coating with dextran. Then, dextran was oxidized and cross linked to USPIO by propyl- ene oxide, and the hybrid peptides RGD10-NGR9 were finally conjugated to the surface of USPIO in Schiff bases with dex- tran. The morphology of prepared nanoparticles was observed under electron microscope. The mean particle size and size distribution were observed by dynamic light scattering. The surface coating materials were determined by infrared spec- trometer. Zeta potential was tested and magnetic intensity was examined by vibrating sample magnetometer. Results In vitro studies demonstrated a better binding affinity of FITC-RGD10-NGR9 to HUVEC. RGD10-NGR9 targeted USPIO nanoparticles were successfully constructed. The transmission electron microscopy of the nanoparticles was homogeneous in size and round in shape, with average diameters of 30 nm. The stable properties were tested with Zeta potential of -60.9 mV and magnetic intensity of 53.54 emu/g under 70℃. Conclusion RGD10-NGR9 targeted peptides have active targeting properties to tumor angiogenesis, with good affinity to HUVEC in vitro. The novel synthesized RGD10-NGR9 USPIO has stable properties.
出处 《中国医学影像技术》 CSCD 北大核心 2013年第9期1418-1422,共5页 Chinese Journal of Medical Imaging Technology
基金 上海市科委资助项目(0952nm05900 09411960500 10411967600)
关键词 血管生成 磁共振成像 超顺磁性氧化铁 对比剂 Angiogenesis Magnetic resonance imaging Ultrasmall superparamagnetic iron oxide Contrast media
  • 引文网络
  • 相关文献

参考文献15

  • 1Folkman J. Tumor angiogenesis: Therapeutic implications. New Engl J Med, 1971,285(21):1182-1186.
  • 2Harris TD, Kalogeropoulos S, Nguyen T, et al. Design, synthesis, and evaluation of radiolabeled integrin alpha v beta 3 receptor antagonists for tumor imaging and radiotherapy. Cancer Biother Radiopharm, 2003,18(4):627-641.
  • 3Bhagwat SV, Petrovic N, Okamoto Y, et al. The angiogenic regulator CD13/APN is a transcriptional target of Ras signaling pathways in endothelial morphogenesis. Blood, 2003,101(5):1818-1826.
  • 4Curnis F, Sacchi A, Gasparri A, et al. Isoaspartate-glycine-arginine: A new tumor vasculature-targeting motif. Cancer Res, 2008,68(17):7073-7082.
  • 5Laurent S, Forge D, Port M, et al. Magnetic Iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev, 2008,108(6):2064-2110.
  • 6Laurent S, Dutz S, Hfeli UO, et al. Magnetic fluid hyperthermia: Focus on superparamagnetic Iron oxide nanoparticles. Adv Colloid Interface Sci, 2011,166(1-2):8-23.
  • 7Schottelius M, Laufer B, Kessler H, et al. Ligands for mapping alphavbeta3-integrin expression in vivo. Acc Chem Res, 2009,42(7):969-980.
  • 8粟波,徐清华,周崧雯,孙希文,吴秋芳,周彩存.靶向肿瘤新生血管的顺磁性纳米脂质体在MRI诊断肺癌中的研究[J].肿瘤,2008,28(6):494-497. 被引量:10
  • 9Dijkgraaf I, Beer AJ, Wester HJ. Application of RGD-containing peptides as imaging probes for alphavbeta3 expression. Front Biosci, 2009,14:887-899.
  • 10Garanger E, Boturyn D, Dumy P. Tumor targeting with RGD peptide ligands-design of new molecular conjugates for imaging and therapy of cancers. Anticancer Agents Med Chem, 2007,7(5):552-558.

二级参考文献10

  • 1MULDER W J, STRIJKERS G J, HABETS J W, et al. MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle[ J ]. FASEB J, 2005,19(14) :2008-2010.
  • 2ANNE M M, PATRICK M W, KATHRYN C C, et al. Targeted nanoparticles for quantitative imaging of sparse molecular epitopes with MRI[J]. Magn Reson Med, 2004 , 51 (3) :480-486.
  • 3HALLAHAN D, GENG L, QU S, et al. Integrin-mediated targeting of drug delivery to irradiated tumor blood vessels[ J]. Cancer Cell,2003 , 3 ( 1 ) : 63-74.
  • 4BARRETT T, BRECHBIEL M, BERNARDO M, et al. MRI of tumor angiogenesis [ J ]. J Magn Reson Imaging, 2007, 26 ( 2 ) : 235 -249.
  • 5PETER H, MIRIAM B, TINA V, et al. Novel RGD lipopeptides for the targeting of liposomes to integrin-expressing endothelial and melanoma cells [ J ]. Protein Engineering Design and Selection, 2004, 17(5) :433-441.
  • 6LEI H, AN P, SONG S, et al. A novel peptide isolated from a phage display library inhibits tumor growth and metastasis by blocking the binding of vascular endothelial growth factor to its kinase domain receptor [ J ]. J Biol Chem, 2002, 277 ( 45 ) : 43137- 43142.
  • 7AN P, LEI H, ZHANG J, et al. Suppression of tumor growth and metastasis by a VEGFR-1 antagonizing peptide identified from a phage display library[J], Int J Cancer,2004,111(2) :165-173.
  • 8贵金属及其合金化学分析方法:金合金中钆量的测定[M].中华人民共和国国家标准,GB/T15072.11-94.
  • 9MCDONALD D M, CHOYKE P L. Imaging of angiogenesis : from microscope to clinic[J]. Nat Med,2003, 9(6) :713-725.
  • 10徐清华,粟波,赵印敏,唐亮,周彩存.^(131)Ⅰ标记血管靶向分子在肿瘤显像中的应用[J].肿瘤防治研究,2007,34(11):860-863. 被引量:5

共引文献9

;
使用帮助 返回顶部