期刊文献+

基于椎弓根螺钉的新型聚醚醚酮树脂动态稳定内固定系统的生物力学评价 被引量:8

Biomechanical evaluation of pedicle screw-based polyetheretherketone dynamic stabilization system
原文传递
导出
摘要 目的 评价一种丝于椎弓根螺钉的新型聚醚醚酮树脂(PEEK)动态稳定内固定系统的生物力学特性。方法将骼套测试装置加载于试验机上进行静态测试(压弯、拉伸和扭转)和疲劳测试。静态压缩弯曲与拉伸弯曲试验采用位移控制加载.以25mm/min速率将内固定系统压或拉至破坏:静态扭转试验采用扭转角度控制加载,以60°/min的速率将结构物扭转至极限状态。疲劳试验采用载简控制的眶弯疲劳加载.加载的波形为正弦波,加载频率为5Hz,载荷比为10,循环极限次数为500万次。结果PEEK动态稳定内固定系统静态压缩弯曲2%变形位移为1.52mm,弹性位移为(6.39±1.80)mm,屈服载荷为(1505.86±189.17)N,压弯刚度为(236.16±59.64)N/toni,极限载荷为(1649.05±206.46)N;静态拉仲弯曲2%变形位移为1.52nml,弹性位移为(24.86±5.71)mm,屈服载荷为(2041.50±605.80)N,拉弯刚度为(28.70±7.47)N/mm,极限载荷(2424.51±625.82)N;静态扭转2%变形细化移为1.95°,弹性角位移为8.73°±3.69°,屈服扭矩为(6.48±1.93)N·in,扭转刚度为(0.73±0.20)N/mm,极限扭矩为(9.31±1.12)N·m。脊柱内固定系统疲劳极限载荷参考值为1000N、结论PEEK动态稳定内崮定系统具有较好的动态稳定性,且能保留固定节段活动度。 Objective To clarit biomechanical eharacteristics of the pedicle screw-based polyetheretherketone (PEEK) dynamic stal)ilization system. Methods Mechanical tests were performed fol- lowing tile guideline of ASTM FI 717-04 In determine the mechanical characteristics of the 6, 35 mm PEEK rod under stalic and dynamic hladiug conditinn Static cnmpressinn l)ending tests were conducted in the ElectroForce~ 3510 instrument and in displacement control at a rate of 25 mm/min until failure occurred; tailure was defined as either fractnren|'allimplantoranoticeab]ereductioninstiffness, ix)ad and displacement data were collected. Statietnrsion tests were conducted in the same machine and under rotation control at a rate of 1 degree/s until a rotational dis- placement of 30 degrees was reached or failure occurred. Torque and rotation data were again eollectecL Dynamic compression tests were perfornmd in sinusoidal displacement control using an R ratio equal to lO, and at a maximum fl'eqnency of 5 Hz and in ambient conditions. Each specimen was dynamically loaded until fracture of the implant urred or 5 million cycles had occurred. Results The static compression bending tests showed that the mean aud standard (leviatinn of the displacement at 2% offset was 1.52 mm, elastic displacement 6.39 -± 1.80 ram, compressive bending yiehl load 1505.86 ± 189. 17 N, compressive bending stiffness 236. 16 ± 59.64 N/ram, and compressive bending uhimate hlad 1649.05 ± 206.46 N. The static tension bending tests showed that the mean and standard deviation of the displacement at 2% offset was 1.52 ram, elastic displacement 24.86 ± 5.71 ram, tensile bending yiehl load 2041.50 ± 605.80 N, tensile bending stiffness 28.70 ± 7.47 N/ram, and tensile bending uhi- mate h)ad 2424.51 -± 625.82 N. The static torsional tests showed that the mean and standard deviation of the angular displacement at 2% offset was 1.95°, elastic angular displacement 8.73°±3. 69°, yield torque 6.48 ± 1.93 N · m, torsional stiffness O. 73 ±0.20 N/ram, and uhimate torque 9.31 ± 1. 12 N ·m The reference value for the en- durance uhimate load of the internal fixation of the spine was 1000 N. Conclusion The PPDS provides dynamic stal)ilily in case of instrument segments and preserves motion at the operative level.
出处 《中华创伤骨科杂志》 CAS CSCD 北大核心 2013年第9期800-803,共4页 Chinese Journal of Orthopaedic Trauma
基金 卫生部重大社会公益项目,Major Social Welfare Project of Ministry of Health
关键词 腰椎 内固定器 生物力学 聚醚醚酮树脂 Lumbarvertebrae Internal fixator~ Biomechanics Polyetheretherkctone
  • 相关文献

参考文献15

  • 1Boos N, Webb JK. Pedicle screw fixation in spinal disorders: a Eu- ropean view. Ear Spine J, 1997, 6: 2-18.
  • 2Park P, Garton HJ, Gala VC, et al. Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature. Spine, 2004, 29: 1938-1944.
  • 3Mulholland RC, Sengupta DK. Rationale, principles and experimental evaluation of the concept of soft stabilization. Eur Spine J, 2002, 11 Suppl 2: S198-S205.
  • 4Rivard CH. Rhalmi S. Coillard C. In vivo biocompatibility testing of peek polymer for a spinal implant system: a study in rabbits. J Biomed Mater Res, 2002, 62: 488-498.
  • 5彭慧明,翁习生.聚醚醚酮材料在骨科植入物的应用进展[J].中华骨科杂志,2011,31(3):265-269. 被引量:8
  • 6Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials, 2007, 28: 4845-4869.
  • 7Bono CM, Kadaba M, Vaecaro AR. Posterior pedicle fixation-tmsed dynamic stabilization devices for the treatment of degenerative diseases of the lumbar spine. J Spinal Disord Teeh, 2009, 22: 376-383.
  • 8Highsmith JM, Tumialan I,M, Rodts GJ. Flexible rods and the case for dynamic stabilization. Neurosurg Focus, 2007, 22: E11.
  • 9Ponnappan R K, Serhan H, Zarda B, et al. Biomechanical evaluation and comparison of polyetheretherketone rod system to traditional tita- nium rod fixation. Spine J, 2009, 9: 263-267.
  • 10De Iure F, Bosco G, Cappuccio M, et al. Posterior lumbar fusion by peek rods in degenerative spine: preliminary report on 30 cases. Eur Spine J, 2012, 21 Suppl 1: S50-S54.

二级参考文献56

  • 1Kumar MN,Jacquot F,Hall H.Long-term follow-up of functional outcomes and radiographic changes at adjacent levels following lumbar spine fusion fordegenerative disc disease[J].Eur Spine J,2001,10(4):309-313.
  • 2Park P,Garton HJ,Gala V,et al.Adjacent segment disease after lumbar or lumbosacral fusion:review of the literature[J].Spine,2004,29(17):1938-1944.
  • 3Sengupta DK.Dynamic stabilization devices in the treatment of the low back pain[J].Neurology India,2005,53(4):466-474.
  • 4Gardner A,Pande AC.Graf ligamentoplasty:a 7-year follow-up[J].Eur Spine J,2002,1I(Suppl 2):S157-S163.
  • 5Wild A,Jaeger M,Bushe C,et al.Biomechanical analysis of Graf's dynamicspine stabilisation system ex vivo[J].Biomed Tech(Berl),2001,46(10):290-294.
  • 6Quint U,Wilke HJ,Lber F,et al.Laminectomy and functional impairment ofthelumbar spine:the importance of muscle forces in flexible and rigid instrumented stabilization-a biomechanieal study in vitro[J].Eur Spine J,1998,7(3):229-238.
  • 7Kanayama M,Hashimoto T,Shigenobu K,et al.A minimum 10year follow-up of posterior dynamic stabilization using Graf artificial ligament[J].Spine,2007,32(18):1992-1997.
  • 8Sengupta DK.Dynamic stabilization devices in the treatment of low back pain[J].Neurol India,2005,53(4):466-474.
  • 9Sengupta DK,Mulholland RC.Fulcrum assisted soft stabilization system:a new concept in the surgical treatment of degenearteive low back pain[J].Spine,2005,30(9):1019-1029.
  • 10Schwarzenbach O,Berlemann U,Stoll Met et al.Posterior dynamic stabilizationsystems:DYNESYS[J].Orthop Clin North-Am,2005,36(3):363-372.

共引文献20

同被引文献75

  • 1滕海军,周跃,王建,范丽静.椎弓根螺钉强化在骨质疏松椎体的应用研究进展[J].中华创伤杂志,2005,21(5):392-394. 被引量:11
  • 2郑燕平,刘新宇,贾龙,王延国,黎君彦.腰椎后路椎间融合术后椎间融合的X线片及三维CT评价[J].中华骨科杂志,2009,29(12):1104-1108. 被引量:22
  • 3李驰,徐华梓,王向阳,倪文飞,池永龙,黄其衫,林焱,毛方敏.经皮与开放椎弓根螺钉内固定治疗胸腰椎骨折对椎旁肌影响的比较[J].中华外科杂志,2007,45(14):972-975. 被引量:18
  • 4杨惠林,唐天驷.腰椎不稳与腰椎管狭窄专题研讨会纪要[J].中华骨科杂志,1994,914(1):60-63.
  • 5Kumar A,Beastall J,Hughes J,et aI.Disc changes in the bridged and adjacent segment after Dynesys dynamic stabilization system after two years.Spine (Phila Pa 1976). 2006;33(26):2909-2914.
  • 6De lure F, Carson WL,Hardacker JW, et aI.The effect of arthrodesis,implant stiffness,and time on the canine lumbar spine. JSpine Disord Tech.2007;20:549-559.
  • 7Jensen MP, Karoly P, Braver S. The measurement of clinical painintensity: a comparison of six methods. Pain. 1986;27(1 ); 117-126.
  • 8Falrbank JC, Pynsent PB. The Oswestry Disability Index. Spine (Pbi!a Pa 1976). 2000;25(22): 2940-2952.
  • 9Ghlsell C,Wang JC,Bhatia NN,et al.Adjacent segment degeneration n the lumbar spine.J Bone Joint Surg Am. 2004;86(7); 1497-1503,.
  • 10Stol TM,Dubo s G,-chwitrzenbach O.The dynamic neutralization sy@tem for the sp ne a multi-center study of a novel non-fusion system.Eur Spine J, 2002;11 Suppl 2:S 170-178,.

引证文献8

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部