期刊文献+

富锂正极材料0.5Li_2MnO_3·0.5LiCoO_2的熔盐法合成及改性 被引量:3

Synthesis and modification of Li-rich cathode material 0.5Li_2MnO_3·0.5LiCoO_2 by molten salt method
下载PDF
导出
摘要 通过熔盐法合成富锂正极材料0.5Li2MnO3.0.5LiCoO2,以低熔点盐为原料,低温熔融混合,分别研究了不同热处理方式和锂配比对富锂正极材料0.5Li2MnO3.0.5LiCoO2的结构、形貌和电化学性能的影响。结果表明:采用化学计量比的锂盐,低温200℃预处理后,高温短时间处理,可以得到粒径均一和层状结构良好的材料。为了提高材料的循环性能,通过熔盐法对富锂正极材料0.5Li2MnO3.0.5LiCoO2进行氟离子掺杂。结果表明:氟离子掺杂后,材料的循环性能和倍率性能均得到提高;同时,在大电流下,氟离子掺杂减缓了容量缓升现象,缩短了活化时间。 Li-rich cathode material 0.5Li2MnO3·0.5LiCoO2 is prepared by molten salt method,using raw materials with low melting point and mixing at low temperature.The influences of various sintered temperatures and different lithium contents on crystal structure,morphology and electrochemical properties of Li-rich cathode material are performed.Powders with homogenous sizes distribution and well layer structure are obtained when sample sinters at 850℃ for short time after preheated at 200℃ and uses stoichiometric amounts of Li source.In order to improve cycling performance,Li-rich material 0.5Li2MnO3·0.5LiCoO2 is modified by fluorinion-doping using molten salt method.The results show that cycling and rate performance are improved.At the same time,the phenomenon of capacity increasing with cycles is relieved after fluorinion-doping,and the time of activation is shortened at high current density.
出处 《现代化工》 CAS CSCD 北大核心 2013年第8期53-57,59,共6页 Modern Chemical Industry
基金 北京市教育委员会科技创新平台面上项目(JC005012201101)
关键词 锂离子电池 0 5Li2MnO3·0 5LiCoO2 熔盐合成 氟离子掺杂 lithium ion battery 0.5Li2MnO3·0.5LiCoO2 molten salt method fluorinion-doping
  • 相关文献

参考文献18

  • 1Kang S H,Johnson C S,Vaughey J T,et al.The effects of acid treatment on the electrochemical properties of 0.5Li2MnO3·0.5LiNi0.44Co0.25 Mn0.31O2 electrodes in lithium cells[J].J Electrochem Soc,2006,153(6):A1186-A1192.
  • 2Hong J,Seo D H,Kim S W,et al.Structural evolution of layered Li1.2Ni0.2Mn0.6O2 upon electrochemical cycling in a Li rechargeable battery[J].J Mater Chem,2010,20:10179-10186.
  • 3Kim D,Gim J,Lim J,et al.Synthesis of xLi2 MnO3· (1-x) LiMO2 (M =Cr,Mn,Co,Ni) nanocomposites and their electrochemical properties[J].Mater Res Bull,2010,45:252-255.
  • 4Bareno J,Balasubramanian M,Kang S H,et al.Long-range and local structure in the layered oxide Li1.2 Co0.4 Mn0.4O2[J].Chem Mater,2011,23:2039-2050.
  • 5Wei Y J,Nikolowski K,Zhan S Y,et al.Electrochemical kinetics and cycling performance of nano Li[Li0.23 Co0.3 Mn0.47] O2 cathode material for lithium ion batteries[J].Electrochem Commun,2009,11:2008-2011.
  • 6Sun Y,Shiosaki Y,Xia Y,et al.The preparation and electrochemical performance of solid solutions LiCoO2-Li2 MnO3 as cathode materials for lithium ion batteries[J].J Power Sources,2006,159:1353-1359.
  • 7Zhao Y J,Zhao C C,Feng H L,et al.Enhanced electrochemical performance of Li[Li0.2 Ni0.2 Mn0.6] O2 modified by manganese oxide coating for lithium-ion batteries[J].Electrochem Solid-State Lett,2011,14(1):A1-AS.
  • 8Liu J,Manthiram A.Functional surface modifications of a high capacity layered Li[Li0.2 Mn0.54 Ni0.13 Co0.13] O2 cathode[J].J Mater Chem,2010,20:3961-3967.
  • 9Park S H,Sun Y K.Synthesis and electrochemical properties of layered Li[Li0.15 Ni(0.275-x/2) Alx Mn(0.575-x/2)] O2 materials prepared by sol-gel method[J].J Power Sources,2003,119-121:161-165.
  • 10Sun Y K,Kim M G,Kang S H,et al.Electrochemical performance of layered Li[Li0.15 Ni0.2752-x Mgx Mn0.575] O2 cathode materials for lithium secondary batteries[J].J Mater Chem,2003,13:319-322.

同被引文献28

  • 1WANG H, TAN T A, YANG P, et al. High-rate performances of the Ru-doped spinel LiNi0.5Mn1.5O4: Effects of doping and particle size [J]. J Phys Chem C, 2011, 115: 6102-6110.
  • 2NITHYA C, SYAMALA K V S, GOPUKUMAR S.Synthesis of high voltage (4.9 V) cycling LiNi:,CoyMn1-x-yO2 cathode materials for lithium rechargeable batteries [J]. Phys Chem Chem Phys, 2011, 13: 6125-6132.
  • 3JEONG J H, J1N B S, KIM W S, et al. The influence of composi- tional change of 0.3 Li2MnO3 · 0.7 LiMn1-xNio0.10AO2(0.2 ≤ x ≤ 0.5, y=x-0.1) cathode materials prepared by co-precipitation [J]. J Power Sources, 2011,196: 3439-3442.
  • 4ZHOU X F, WANG F, ZHU Y M, et al. Graphene modified LiFePO4 cathode materials for high power lithium ion batteries [J]. J Mater Chem, 2011, 21: 3353-3358.
  • 5ZHAO X, CUI Y J,XIAO L,et al.Molten salt synthesis of Li1-x(Nio.5- Mn05)1-xO2 as cathode material for Li-ion batteries [J]. Solid State Ionics, 2011,192: 321-325.
  • 6CHANG Z R, CHEN Z J, WU F, et al. The synthesis of Li(NileCO1/3- Mn1/3)O2 using eutectic mixed lithium salt LiNO3-LiOH [J]. Elec- trochim Acta, 2009, 54: 6529-6535.
  • 7CHANG Z R,YU X, TANG H W,et al.Synthesis of LiNi1/3COl/3Al1/3O2 cathode material with eutectic molten salt LiOH-LiNO3 [J]. Powder Technol, 2011,207: 396-400.
  • 8TAN K S, REDDY M V, SUBBA R G V, et al. High-performance LiCoO2 by molten salt (LiNO3:LiC1) synthesis for Li-ion batteries [J]. J Power Sources, 2005, 147: 241-248.
  • 9REDDY M V, SUBBA R G V, CHOWDARI B V R. Preparation and characterization of LiNi0.5Co0.5O2 and LiNio.sCo0.4Al0.1O2 by mol- ten salt synthesis for Li-ion batteries [J]. J Phys Chem C, 2007, 111: 11712-11720.
  • 10LIANG H Y,Q1U X P,ZHANG S C, et al.High performance lithium cobalt oxides prepared in molten KC1 for rechargeable lithium-ion batteries [J]. Electrochem Commun, 2004, 6: 505-509.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部