Asymptotic behavior of solutions of defocusing integrable discrete nonlinear Schrodinger equation
Asymptotic behavior of solutions of defocusing integrable discrete nonlinear Schrodinger equation
摘要
We report our recent result about the long-time asymptotics for the defocusing integrable discrete nonlinear Schrodinger equation of Ablowitz- Ladik. The leading term is a sum of two terms that oscillate with decay of order t-1/2.
We report our recent result about the long-time asymptotics for the defocusing integrable discrete nonlinear Schrodinger equation of Ablowitz- Ladik. The leading term is a sum of two terms that oscillate with decay of order t-1/2.
参考文献17
-
1Ablowitz M J, Ladik J F. Nonlinear differential-difference equations. J Math Phys, 1975, 16: 598-{)03.
-
2Ablowitz M J, Ladik J F. Nonlinear differential-difference equations and Fourier analysis. J Math Phys, 1976, 17: 1011-1018.
-
3Ablowitz M J, Newell A C. The decay of the continuous spectrum for solutions of the Korteweg-de Vries equation. J Math Phys, 1973, 14: 1277-1284.
-
4Ablowitz M J, Prinari B, Trubatch A D. Discrete and Continuous Nonlinear Schrodinger Systems. Cambridge: Cambridge University Press, 2004.
-
5Ablowitz M J, Biondini G, Prinari B. Inverse scattering transform for the integrable discrete nonlinear Schrodinger equation with nonvanishing boundary conditions. Inverse Problems, 2007, 23 1711-1758.
-
6Deift P A. Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach. New York: Courant Institute of Mathematical Sciences/Providence: Amer Math Soc, 1998.
-
7Deift P A, Its A R, Zhou X. Long-time asymptotics for integrable nonlinear wave equations. In: Fokas A S, Zakharov V E, eds. Important Developments in Soliton Theory, 1980-1990. Berlin: Springer-Verlag, 1993, 181-204.
-
8Deift P A, Zhou X. A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation. Ann of Math (2), 1993, 137(2): 295-368.
-
9Kamvissis S. On the long time behavior of the doubly infinite Toda lattice under initial data decaying at infinity. Comm Math Phys, 1993, 153(3): 479-519.
-
10Kriiger H, Teschl G. Long-time asymptotics of the Toda lattice in the soliton region. Math Z, 2009, 262(3): 585-602.
-
1Jian XIE,Daoyuan FANG.Global Well-Posedness and Scattering for the Defocusing H^s-Critical NLS[J].Chinese Annals of Mathematics,Series B,2013,34(6):801-842.
-
2张再云,黄建华,孙明保.ALMOST CONSERVATION LAWS AND GLOBAL ROUGH SOLUTIONS OF THE DEFOCUSING NONLINEAR WAVE EQUATION ON R^2[J].Acta Mathematica Scientia,2017,37(2):385-394.
-
3李宏.Propagation and interaction of two-component vector dark solitons in the defocusing nonlinear media[J].Chinese Optics Letters,2013,11(14):95-98.
-
4XIA Bao-Qiang,ZHOU Ru-Guang.An Integrable Decomposition of Defocusing Nonlinear Schr(o|¨)dinger Equation[J].Communications in Theoretical Physics,2009,52(8):203-205.
-
5Ji Qiang ZHENG.The Defocusing Energy-supercritical Hartree Equation[J].Acta Mathematica Sinica,English Series,2014,30(4):547-566.
-
6闫振亚,闫方驰.Dark Solitons for the Defocusing Cubic Nonlinear Schr?dinger Equation with the Spatially Periodic Potential and Nonlinearity[J].Communications in Theoretical Physics,2015(9):309-319.
-
7李苏宇,郭福明,杨玉军,金明星.Defocusing role in femtosecond filamentation: Higher-order Kerr effect or plasma effect?[J].Chinese Physics B,2015,24(11):54-58. 被引量:1
-
8本刊英文版Vol.30(2014),No.4论文摘要[J].数学学报(中文版),2014,57(3):629-632.
-
9YUHui-You YANJia-Ren.Direct Approach to Study of Soliton Perturbations of Defocusing Nonlinear SchrSdinger Equation[J].Communications in Theoretical Physics,2004,42(6X):895-898.
-
10光学元件测试及设备[J].中国光学,1994(2):81-82.