期刊文献+

Asymptotic behavior of solutions of defocusing integrable discrete nonlinear Schrodinger equation

Asymptotic behavior of solutions of defocusing integrable discrete nonlinear Schrodinger equation
原文传递
导出
摘要 We report our recent result about the long-time asymptotics for the defocusing integrable discrete nonlinear Schrodinger equation of Ablowitz- Ladik. The leading term is a sum of two terms that oscillate with decay of order t-1/2. We report our recent result about the long-time asymptotics for the defocusing integrable discrete nonlinear Schrodinger equation of Ablowitz- Ladik. The leading term is a sum of two terms that oscillate with decay of order t-1/2.
出处 《Frontiers of Mathematics in China》 SCIE CSCD 2013年第5期1077-1083,共7页 中国高等学校学术文摘·数学(英文)
关键词 Discrete nonlinear Schrodinger equation Ablowitz-Ladik model asymptotics inverse scattering transform nonlinear steepest descent Discrete nonlinear Schrodinger equation, Ablowitz-Ladik model,asymptotics, inverse scattering transform, nonlinear steepest descent
  • 相关文献

参考文献17

  • 1Ablowitz M J, Ladik J F. Nonlinear differential-difference equations. J Math Phys, 1975, 16: 598-{)03.
  • 2Ablowitz M J, Ladik J F. Nonlinear differential-difference equations and Fourier analysis. J Math Phys, 1976, 17: 1011-1018.
  • 3Ablowitz M J, Newell A C. The decay of the continuous spectrum for solutions of the Korteweg-de Vries equation. J Math Phys, 1973, 14: 1277-1284.
  • 4Ablowitz M J, Prinari B, Trubatch A D. Discrete and Continuous Nonlinear Schrodinger Systems. Cambridge: Cambridge University Press, 2004.
  • 5Ablowitz M J, Biondini G, Prinari B. Inverse scattering transform for the integrable discrete nonlinear Schrodinger equation with nonvanishing boundary conditions. Inverse Problems, 2007, 23 1711-1758.
  • 6Deift P A. Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach. New York: Courant Institute of Mathematical Sciences/Providence: Amer Math Soc, 1998.
  • 7Deift P A, Its A R, Zhou X. Long-time asymptotics for integrable nonlinear wave equations. In: Fokas A S, Zakharov V E, eds. Important Developments in Soliton Theory, 1980-1990. Berlin: Springer-Verlag, 1993, 181-204.
  • 8Deift P A, Zhou X. A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation. Ann of Math (2), 1993, 137(2): 295-368.
  • 9Kamvissis S. On the long time behavior of the doubly infinite Toda lattice under initial data decaying at infinity. Comm Math Phys, 1993, 153(3): 479-519.
  • 10Kriiger H, Teschl G. Long-time asymptotics of the Toda lattice in the soliton region. Math Z, 2009, 262(3): 585-602.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部