期刊文献+

少模光纤模式差分群时延的设计与优化 被引量:16

Design and Optimization of Mode Differential GroupDelayfor Few-Mode Fiber
原文传递
导出
摘要 基于少模光纤(FMF)的模分复用(MDM)传输系统,模式差分群时延(MDGD)是影响系统设计的关键因素之一。考虑实际光纤制备工艺,数值分析了阶跃折射率(SI)光纤、渐变折射率(GI)光纤、带有外下陷包层的阶跃型光纤和带有外下陷包层的渐变型光纤中不同的MDGD特性。在支持四个导模条件下,优化设计得到两种不同折射率剖面分布的四模光纤,分别具有较大的MDGD(LP11,LP12,LP02与LP01的MDGD分别是4.65,10.02,11.73ps/m)和较小的MDGD(LP11,LP12,LP02与LP01的MDGD分别是-0.049,-0.258,-0.168ps/m)。制备了阶跃折射率分布的少模光纤,其实测基模的损耗为0.23dB/km(1550nm)和0.37dB/km(1310nm)测量及分析结果证明其能够支持MDM应用。 In mode division multiplexing (MDM) transmission system using few-mode fiber (FMF), mode differential group delay (MDGD) is one of the key factors that influence the system performance. Considering the practical fiber fabrication technique, the MDGD characteristics between different modes of step-index (SI) fiber, graded-index (GI) fiber, trench-assisted SI fiber, and trench-assisted GI fiber are numerically investigated. Under the condition of supporting four modes, two optimized refractive index profiles of FMFs with high and low MDGDs are presented. The high MDGDs of LPu, LP12, LP02 versus LP01 are 4.65, 10.02, 11.73 ps/m, respectively; while low MDGDs of LPM, LP12, LPo2 versus LP0 are - 0. 049, -0. 258, - 0. 168 ps/m, respectively. We fabricate and characterize the FMF with a SI profile, whose loss of fundamental mode is 0.23 dB/km at 1550 nm and 0.37 dB/km at 1310 nm. The measurement and analysis results indicate that it can be used for futuro MDM transmission system.
出处 《光学学报》 EI CAS CSCD 北大核心 2013年第9期72-78,共7页 Acta Optica Sinica
基金 国家863计划(2012AA011301) 国家自然科学基金(61275069)
关键词 光纤光学 模分复用 少模光纤 折射率剖面 模式差分群时延 fiber optics mode division multiplexing few-mode fiber refractive index profile mode differentialgroup delay
  • 相关文献

参考文献15

  • 1R J Essiambre, G Kramer, P J Winzer, et al: Capacity limits of optical fiber networks [J]. J Lightwave Technol, 2010, 28(4): 662-701.
  • 2R Ryf, S Randel, A H Gnauck, et al: Mode-division multiplexing over 96 km of few mode fiber using coherent 6 )4 6 MIMO processing [J] J Lightwave Technol, 2012, 30(4): 521-531.
  • 3R Ryf, S RandeI, N K Fontaine. 32-hit/s/Hz spectral efficiency WDM transmission over 177-km few-mode fiber[C]. Optical Fiber Communicaton Conference, 2013. PDP5A.
  • 4R Ryf, S Randel, A H Gnauck, et al: Space-division multiplexing over 10 km of three-mode fiber using coherent 6 X 6 MIMO processing E C 1- Optical Fiber Communication Conference, 2011. PDPB10.
  • 5P Sillard, M Astruc, D Boivin, e: al: Few mode fiber for uncoupled mode-division multiplexing transmissions[C]. 37thEuropean Conference and Exposition on Optical Communications, 2011.
  • 6Tu. 5. LeCervin. 7. An Li, Abdullah A1 Amin, Xi Chen, et al: Transmission of 107 Gh/s mode and polarization multiplexed CO-OFDM signal over a two-mode fiber[J]. Opt Express, 2011, 19(9): 8808 8814.
  • 7C Koebele, M Salsi, D Sperti, et al: Two mode transmission with digital inter-modal cross-talk mitigation[ C] ECOC Technical Digest, 2011. Tu. 5. B. 4.
  • 8A R William, N J Summit. Optical Fiber Comprising a Refractive Index Trench[P]. US Patent 4852968, 1989.
  • 9L de Montmorillo, P Matthiisse, F Gooijer, et al: Bend optimized G. 652D compatible trench assisted single mode fibers [C]. 55th IWCS, 2006. 342 347.
  • 10P Sillard, S Richard, L A de Montmorillon, et al: Micro bend losses of trench-assisted single-mode fibers [ C ]. European Conference on Optical Communication, 2010. We. 8. F. 3.

同被引文献87

  • 1戴无惧,张汉一,何永琪.全光网中的光信噪比估算与系统设计[J].中国激光,2003,30(12):1095-1098. 被引量:3
  • 2王瑾,黄德修,元秀华.基于最小均方自适应滤波器的无线光通信接收性能分析[J].中国激光,2006,33(10):1379-1383. 被引量:8
  • 3M Salsi, C Koebele, D Sperti, et al. Mode-division multiplexing of 2 × 100 Gb/s channels using an LCOS-based spatial modulator [J]. J Lightwave Technol, 2012, 30(4): 618-623.
  • 4Peter M Krummrich. Spatial multiplexing for high capacity transport[J]. Optical Fiber Technology, 2011,17(6) : 480-489.
  • 5Riesen Nicolas, Love John D. Weakly:guiding mode-selective fiber couplers[J]. IEEE J Quantum Electron, 2012, 48(7) : 941 -945.
  • 6Abdullah A1 Amin, An Li, Simin Chen, etag.. Dual-LPll mode 4× 4 MIMO-OFDM transmission over a two-mode fiber[J]. Opt Express, 2011, 19(17): 16672-16679.
  • 7Koebele Clemens, Salsi Massimiliano, Milord Laurcnt, et al. 40 km transmission of five mode division multiplexed data streams at 100 Gb/s with low MIMO-DSP complexity[C]. 37th European Conference and Exposition on Optical Communications, 2011.
  • 8Clemens Koebele, Massimiliano Salsi, Donato Sperti, et al. Two mode transmission at 2 × 100 Gb/s over 40 kin-long prototype few-mode fiber using LCOS-based programmable mode multiplexer and demultiplexer[J]. Opt Express, 2011, 19 (17): 16593-16600.
  • 9A Sano, T Kobayashi, S Yamanaka, et al.. “102.3-Tb/s (224×548-Gb/s) C- and extended L-band all-raman transmission over 240 km using PDM-64QAM single carrier FDM with digital pilot tone[C]. OFC, 2012: PDP5C.3.
  • 10P P Mitra, J B Stark. Nonlinear limits of the information capacity of optical fiber communication[J]. Nature, 2001, 411: 1027-1030.

引证文献16

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部