摘要
非均匀非线性波导中光脉冲的传播由(2+1)维变系数非线性薛定谔方程描述。通过引进相似变换,构建出非均匀非线性波导中的准确的二维一阶、二阶线光学畸形波解;深入讨论了它们在周期色散介质中的传播特性;给出了操控它们传播的控制条件。研究发现一阶、二阶光学畸形波解在平面上看具有类似于KP(KadomfsovPefrishvili)方程中线孤子解的特征,因此引进了线光学畸形波的概念。
Optic pulse propagation in inhomogeneous nonlinear waveguides can be described by nonlinear Schr6dinger equation with (3 q-1) dimension variable coefficients. By using similar transformation, exact two-dimensional 1storder and 2nd-order optical rogue wave solutions is developed. Moreover, the dynamics of the two-dimensional 1storder and 2nd-order 2-dimensional rogue wave propagation in the waveguides with periodic dispersion are discussed. Finally, manipulating propagate conditions of two-dimensional optical rogue wave is given. Worth while pointing out especially, the formats of both 1-order and 2-order two-dimensional optical rogue wave in transverse section of the media are similar to line soliton of the KP (Kadomfsov-Pefrishvili) equation, so the concept of linear optical rogue wave is proposed in this paper.
出处
《光学学报》
EI
CAS
CSCD
北大核心
2013年第9期219-226,共8页
Acta Optica Sinica
基金
国家自然科学基金(11072219)
关键词
非线性光学
(2+1)维
非线性薛定谔方程
线畸形波
传播控制
nonlinear optics
(2+1) dimension
nonlinear Schr6dinger equation
linear rogue wave
transmissioncontrolling