期刊文献+

基于自适应技术的校园网流量控制系统设计

The Design of the Campus Network Traffic Control System Based on Adaptive Technology
下载PDF
导出
摘要 目前网络流控系统能根据管理员的要求分配带宽,保证关键应用的带宽需求,但很多时候未能充分利用网络带宽。提出了让流控系统能自动地调整带宽的分配(也就是自适应),这样能充分利用带宽,提高了网络的运行效率,也提高了网络的经济效益。 the current network traffic control system according to the requirements of bandwidth allocation administrator, ensure bandwidth critical applications, but many times failed to make full use of network bandwidth, proposes a design idea, that is to let the flow distribution system can automatically adjust the bandwidth (or adaptive) , it can make full use of bandwidth, improve the network operation efficiency, enhance the net economic benefit.
作者 黄明辉
机构地区 泰州学院
出处 《电脑编程技巧与维护》 2013年第18期82-83,共2页 Computer Programming Skills & Maintenance
关键词 自适应 流量控制 校园网 adaptive flow control campus network
  • 相关文献

参考文献2

二级参考文献13

  • 1Braden B,Clark D,Crowcroft J,et al.Recommendations on queue management and congestion avoidance in the Internet.RFC 2309,1998
  • 2Floyd S,Jacobson V.Random early detection gateways for congestion avoidance.IEEE/ACM Trans.on Networking,1993,1(4):397~413
  • 3Christiansen M,Jeffay K,Ott D,et al.Tuning RED for Web traffic.IEEE/ACM Trans.on Networking,2001,9(3):249~264
  • 4Lin Chinteng,George L C S.Self2O rganizing Control Using Fuzzy Neural Network.Int J C,1992,56(2):1320~1336
  • 5Akhmetov D F,Dote Y,Ovaska S J.Fuzzy neural network with general parameter adaptation for modeling of nonlinear time-series[J].IEEE Trans on Neural Networks,2001,12(1):148~152
  • 6Maguire L P,Roche B,Mcginnity T M,et al.Predicting a chaotic time series using a fuzzy neural network[J].Information Sciences,1998,112(1-4):125~136
  • 7Er M J,Liao J,Lin J.Fuzzy neural networks-based qualityprediction system for sintering process[J].IEEE Trans on Fuzzy Systems,2000,8(3):314~324
  • 8Narazaki H,Ralescu A L.An improved synthesis method for multilayered neural networks using qualitative knowledge[J].IEEE Trans on Fuzzy Systems,1993,1(2):125~137
  • 9Zhang Y Q,Kandel A.Compensatory neurofuzzy systems with fast learning algorithms[J].IEEE Trans on Neural Networks,1998,9(1):83~105
  • 10Er M J,Liao J,Lin J.Fuzzy neural networks-based quality prediction system for sintering process[J].IEEE Trans on Fuzzy Systems,2000,8(3):314~324

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部