期刊文献+

雨滴表面惯性粒子捕集的湍流效应数值分析 被引量:3

Numerical analysis of turbulent effect on the collection of inertial aerosols by raindrops
下载PDF
导出
摘要 雨滴对气溶胶粒子的清除系数与捕集效率密切相关,并依赖于雨滴附近的气流型式.考虑到实际大气背景均为湍流状态,分别对层流和湍流状态下大尺寸雨滴表面上惯性粒子的捕集过程进行了数值模拟,讨论了湍流脉动对不同粒子轨迹的畸变和扰动.结果表明,层流条件下的模拟结果与已有的实验结果具有很好的一致性.若对雨滴的绕流附加一个湍流强度,则雨滴附近流动速度的随机变化将对粒子的运动轨迹产生明显的影响,导致惯性粒子在湍流状态下被雨滴捕获的效率大于层流捕集效率,湍流脉动效应对粒子捕集效率的提高幅度随粒子尺度的增大而减弱. The scavenging coefficient of aerosols by raindrops depends on the collection efficiency and the flow pattern around the raindrops. Considering the turbulent features of the ambient atmosphere, the collecting processes of inertial aerosols on large raindrops for both laminar and turbulent flows are estimated by employing numerical simulation. The distortion of particle trajectories caused by turbulent fluctuation are discussed and analyzed. The numerical results show that the collection efficiency for laminar flow agrees well with the experimental data of previous studies. When a turbulent intensity exists in the incoming air, particle trajectories are strongly affected by the stochastic variations of the flow, the collection efficiency of the inertial particles are higher for turbulent flow than the case of laminar, and the enhancement of efficiency decreases with the increase of particle size.
出处 《中国环境科学》 EI CAS CSCD 北大核心 2013年第9期1585-1590,共6页 China Environmental Science
基金 国家自然科学基金资助项目(41275157)
关键词 清洗 惯性粒子 雨滴 湍流脉动 捕集效率 scavenging: inertial aerosol: raindrop: turbulent fluctuation: collcction efficicncy
  • 相关文献

参考文献18

  • 1Wang X, Zhang L, Morna M D. Uncertainty assessment of current size-resolved parameterizations for below-cloud particle scavenging by rain [J]. Atmospheric Chemistry and Physics, 2010,10(12):5685-5705.
  • 2Wang X, Zhang L, Morea M D. On the discrepancies between theoretical and measured below-cloud particle scavenging coefficients for rain - a numerical investigation using a detailed one-dimensional cloud microphysics model [J]. Atmospheric Chemistry & Physics, 2011,11(22): 11859-11866.
  • 3Henzing J S, Olivie D J L, van Velthoven P F J. A parameterization of size resolved below cloud scavenging of aerosols by rain [J]. Atmospheric Chemistry and Physics, 2006, 6(11):3363-3375.
  • 4Sportisse B. A review of parameterizations for modeling dry deposition and scavenging of radionuclides [J]. AtmosphericEnvironment, 2007,41(13):2683-2698.
  • 5Seinfeld J H, Pandis S N. Atmospheric chemistry and physics: from air pollution to climate change. [M] New York: John Wiley & Sons, Inc., 1998:950-953,2nd ed.
  • 6Randerson D. Atmospheric science and power production [C]. Washington DC: Technique Information Central, Office of Science and Tech Information, US Deptment of Energy, Doc. DOE/TIC-27601,1984:466-532.
  • 7Chate D M, Murugavel P, All K, et al. Below-cloud rain scavenging of atmospheric aerosols for aerosol deposition models [J]. Atmospheric Research, 2011,99(3-4):528-536.
  • 8Feng J. A 3-mode parameterization of below-cloud scavenging of aerosols for use in atmospheric dispersion models [J]. Atmospheric Environment, 2007,41 (32):6808-6822.
  • 9C-rover S N, Pruppacher H R. The effect of vertical turbulent fluctuations in the atmosphere on the collection of aerosol particles by cloud drops [J]. J. Atmospheric Sciences, 1985, 42(21 ):2305-2318.
  • 10Khain A P, Pinsky M. B. Turbulence effects on the collision kernel, II: Increase of the swept volume of colliding drops [J]. Q. J. Roy. Meteor. Soe., 1997,123(542):1543-1560.

同被引文献12

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部