期刊文献+

基于离散余弦变换的全张量磁梯度计算方法 被引量:1

Full tensor magnetic gradient calculation method based on discrete cosine transform
原文传递
导出
摘要 为了获得高精度全张量磁梯度数据,提出了一种基于离散余弦变换的频域快速计算方法.针对常用的快速傅里叶变换方法在磁场导数计算中存在边界效应的问题,提出移相π/2二维余弦变换时域微分定理,结合位场理论,推导了利用地磁异常数据计算全张量磁梯度的统一公式,并给出算法实现过程.通过算例验证了余弦变换方法在数值、轮廓等关键特征方面均与参考数据符合较好,数据中心区域平均误差在0.05nT/m以下,同时在边界区域可减少傅里叶变换方法带来的边界误差效应. To obtain accurate full tensor magnetic gradient data, a fast method based on discrete cosine transform was proposed. There was the edge effect in computing higher order derivatives of magnetic field using common method of fast Fourier transform(FFT)algorithm. Thus, a solution based on π/2 phase-shifted cosine transform time-differentiation was presented. Using the potential field theory, a unified formula was deduced in order to calculate the full tensor magnetic gradient from the pre-existing magnetic anomaly data, and the key algorithms in the computation was also introduced. Numerical analysis demonstrates that most value and characteristics of the estimated data by the novel method compare favorably with reference magnetic gradient data, and the average error is less than 0.05 nT/m precision in the central area. In addition, the influence of edge effect caused by the Fourier transform method can be reduced in the boundary area.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第8期68-73,共6页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金重点资助项目(60834005)
关键词 磁异常 全张量磁梯度 边界效应 离散余弦变换 快速傅里叶变换 magnetic anomaly full tensor magnetic gradient edge effect discrete cosine transform (DCT) fast Fourier transform(FFT)
  • 相关文献

参考文献15

  • 1Schmidt P W, Clark D A. The magnetic gradient ten- sor: its properties and uses in source characterization [J]. Leading Edge (Tulsa, OK), 2006, 25(1): 75- 78.
  • 2Voss C. Improvements in source resolution that can be expected from inversion of magnetic field tensor data[J]. Leading Edge (Tulsa, OK), 2006, 25(1): 81-84.
  • 3Doll W E, Gamey T J, Beard L P, et al. Airborne vertical magnetic gradient for near-surface applica- tions[J]. Leading Edge (Tulsa, OK), 2006, 25(1): 50-53.
  • 4Oruc B. Location and depth estimation of point-dipole and line of dipoles using analytic signals of the mag- netie gradient tensor and magnitude of vector compo- nents[J]. Journal of Applied Geophysies, 2010, 70 (1): 27-37.
  • 5Tehernychev M, Skip Snyder D D. Open source mag- netic inversion programming framework and its prac- tical applications[J]. Journal of Applied Geophysics, 2007, 61(3-4): 184-193.
  • 6Stolz R, Zakosarenko V, Sehulz M, et al. Magnetic full-tensor SQUID gradiometer system for geophysi- cal applications [J]. Leading Edge (Tulsa, OK), 2006, 25(2):178-180.
  • 7张昌达.航空磁力梯度张量测量——航空磁测技术的最新进展[J].工程地球物理学报,2006,3(5):354-361. 被引量:100
  • 8刘繁明,钱东,李艳,张迎发.密度误差对重力梯度正演精度的影响[J].华中科技大学学报(自然科学版),2010,38(12):89-93. 被引量:2
  • 9Mickus K L, Hinojosa J H. The complete gravity gradient tensor derived from the vertical component of gravity: a Fourier transform technique[J]. Journal of Applied Geophysics, 2001, 46(3) : 159-174.
  • 10余海龙,徐世浙,李海侠,吴乐园,魏巍.曲面上航磁异常与梯度分量的转换方法[J].浙江大学学报(工学版),2011,45(2):397-404. 被引量:3

二级参考文献92

共引文献172

同被引文献20

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部