摘要
动态系统可控性同是经典和量子控制中研究的一个基本问题,本文研究了单自旋和双自旋量子系统的可控李代数的计算.首先基于量子系统可控的等价性条件,通过单量子系统Hamiltonian算符的李括号运算,给出了与基系数相关的系统可控的充要条件.然后利用Cartan分解方法构造了李代数su(4)的矩阵基,同时根据可控性基本定理提出了Hamiltonian算符多重李括号的计算方法及系统的可控性判据.
Controllability of dynamical systems is a fundamental problem for both classical control as well as quantum control. This paper focuses on investigating the controllability Lie algebra of single-spin and two spin quantum systems. Firstly, based on the equivalent controllability conditions of quantum systems, some general necessary and sufficient conditions related to the basis coefficients are obtained by computing Lie brackets of Hamiltonian operators for single-spin quantum systems. Secondly, the matrix basis of Lie algebra su(4) is generated by Cartan decomposition. Using the matrix basis and employing the controllability theorem of quantum system, a calculation method of multiple Lie brackets for the Hamiltonian operators and a controllability criterion of quantum systems are also put forward in this article.
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
2013年第8期1059-1064,共6页
Control Theory & Applications
基金
国家重点基础研究"973"计划资助项目(2012CB821204)
国家自然科学基金资助项目(61273093)
浙江省重点自然科学基金资助项目(LZ12F03001)
关键词
量子系统
李代数
基系数
可控性
su(4)
quantum system
Lie algebra
basis coefficient
controllability
su(4)