期刊文献+

大型快锻液压机Takagi-Sugeno模糊系统设计

Takagi-Sugeno fuzzy system design of large fast forging hydraulic press
下载PDF
导出
摘要 利用ITI-SimulationX软件建立了大型快锻液压机本体和主控系统的精确仿真模型,进行了三维本体与一维系统的集成仿真,结果表明:液压机热态锻造精度达到§1 mm,最高锻造频次达85次/min;针对大型快锻液压机工艺范围广、工况复杂的特点,利用MATLAB/Simulink软件设计了Takagi-Sugeno模糊控制器,以主控系统锻造行程、锻透深度、最大工作压力、工作缸数量和主泵数量作为输入变量,高频响比例阀启闭曲线作为输出变量,依据主控系统仿真结果确定模糊推理规则,通过ITI-SimulationX与MATLAB/Simulink软件协同仿真接口模块实现了对主控系统的智能控制,使液压机在各种工艺参数下,均能达到较高锻造精度和较快响应速度,更好地适应了大型快锻液压机的生产工艺需求. The exact simulation model of the body and the main control system of a large fast forging hydraulic press is built by using the ITI-SimulationX software. The integrated simulation of the three-dimensional body and the onedimensional system is performed. The results show that fast forging hydraulic press can attain the forging precision of ±1mm and the maximum forging frequency of 85 strokes/min during hot forging. For a large fast forging hydraulic press, which has wide process range and complicated operating conditions, we design the Takagi-Sugeno fuzzy controller which includes the forging stroke, forging penetration, maximum working pressure, working hydraulic cylinder number and the number of main pumps as input variables, and the open-close curve of the high-frequency-response proportional valve as output variable. Fuzzy reasoning rules are deduced from simulation results of the main control system by using MATLAB/Simulink software. The intelligent control for the main control system is realized by using the co-simulation interface modules of ITI-SimulationX and MATLAB/Simulink, providing high forging precision and fast response speed under different technological parameters and accommodating to various process requirements for large fast forging hydraulic press.
作者 王丽薇
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2013年第8期1065-1068,共4页 Control Theory & Applications
基金 山西省自然科学基金资助项目(2011011026–1) 20–200MN双柱式快速锻造液压机及操作机系列产业化资助项目(20–200MN)
关键词 快锻液压机 Takagi—Sugeno模糊系统 协同仿真 fast forging hydraulic press Takagi-Sugeno fuzzy system co-simulation
  • 相关文献

参考文献8

二级参考文献41

  • 1李明爱,阮晓钢.倒立摆的双闭环选择型模糊控制设计及仿真[J].计算机仿真,2005,22(1):201-203. 被引量:10
  • 2张乃尧,Ebert,C.倒立摆的双闭环模糊控制[J].控制与决策,1996,11(1):85-88. 被引量:53
  • 3肖建,白裔峰,于龙.模糊系统结构辨识综述[J].西南交通大学学报,2006,41(2):135-142. 被引量:32
  • 4CHIANG J H, HAO P Y. Support vector learning mechanism for fuzzy rule-based modeling: a new approach[J]. IEEE Transactions on Fuzzy Systems, 2004, 12(1): 1 - 12.
  • 5SHEN J, SYAU Y, LEE E S. Support vector fuzzy adaptive network in regression analysis[J]. Computers & Mathematics with Applications, 2007, 54(11/12): 1353 - 1366.
  • 6CHALIMOURDA A, SCHOLKOPF B, SMOLA A J. Experimentally optima/v in support vector regression for different noise models and parameters settings[J]. Neural Networks, 2004, 17(1): 127 - 141.
  • 7NGUYEN D, HOT B. AA bottom-up method for simplifying support vector solutions [J]. IEEE Transactions on Neural Network, 2006, 17(3): 792 - 796.
  • 8LESKI J M. TSK-fuzzy modeling based on e insensitive learning[J]. 1EEE Transactions on Fuzzy Systems, 2005, 13(2): 181 - 193.
  • 9王秋颖.输液管道压力脉动分析[J].装备制造技术,2007(8):48-49. 被引量:6
  • 10TAKAGI T,SUGENO M.Fuzzy identification of systems and its applications to modeling and control [ J].IEEE Trans on Syst Man Cyber,1985,15(1):116-132.

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部