期刊文献+

基于分数阶滑模的航天器姿态鲁棒控制

Robust Control of Spacecraft Attitude Based on Fractional Order Sliding-mode Controller
下载PDF
导出
摘要 针对存在外部扰动及转动惯量不确定性的高精度高稳定度的航天器姿态控制问题,提出了一种具有强鲁棒性的分数阶滑模控制器。首先,在修正罗德里格参数描述的航天器数学模型基础上,导出了便于分数阶滑模控制器设计的等效数学模型。其次,在传统滑模控制的滑模面与控制律中均引入分数阶微分算子,利用分数阶微分算子的快速收敛性与信息记忆性,设计了分数阶滑模控制器,并使用Lyapunov理论与分数阶稳定性理论证明了整个系统的稳定性。最后,仿真试验表明,分数阶滑模控制器具有高精度、强鲁棒性和良好的抗干扰性。 To deal with the high precision and high stability attitude control problem of a spacecraft model with external disturbances and inertia uncertainties,a new strong robust fractional sliding model controller was proposed.Firstly,based on the mathematical model of the spacecraft described with the modified Rodrigues parameters,an equivalent mathematical model was deduced,which was convenient for the design of the fractional sliding mode controller.Secondly,the fractional differential operator with rapid convergence performance and good information memory ability was introduced into the sliding surface and control law,and a fractional sliding mode controller was proposed.The entire system stability was proved with the Lyapunov theory and the fractional-order stability theory.Finally,numerical simulations demonstrate the high stability,strong robustness and excellent interference resistance ability of the fractional sliding mode controller.
出处 《中国空间科学技术》 EI CSCD 北大核心 2013年第4期1-8,共8页 Chinese Space Science and Technology
基金 国家自然科学基金(61174037)资助项目
关键词 分数阶微积分 滑模控制 鲁棒性 李雅普诺夫稳定性定理 航天器姿态 Fractional order integration and differentiation Sliding mode control Robust
  • 相关文献

参考文献9

  • 1DELAVARI H,GHADERI R,RANJBAR A,et al.Fuzzy fractional order sliding mode controller for nonlinear systems[J].Communications in Nonlinear Science and Numerical Simulation,2010,15(4):963-978.
  • 2AGHABABA M P.Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique[J].Nonlinear Dynamics,2012,69(1):247-261.
  • 3DADRAS S,MOMENI H R.Fractional terminal sliding mode control design for a class of dynamical systems with uncertainty[J].Communications in Nonlinear Science and Numerical Simulation,2012,17(1):367-377.
  • 4CHEN D Y,ZHANG R,SPROTT J C,et al.Synchronization between integer order chaotic systems and a class of fractional-order chaotic system based on fuzzy sliding mode control[J].Nonlinear Dynamics,2012,70(2):1549-1561.
  • 5ZHANG B T,PI Y G,LUO Y.Fractional order sliding-mode control based on parameters auto-tuning for velocity control of permanent magnet synchronous motor[J].ISA Transactions,2012,51:649-656.
  • 6MONJE C A,CHEN Y Q,VINAGRE B M,et al.Fractional-order systems and controls fundamentals and applications[M].London:Springer,2010.
  • 7PODLUBNY I.Fractional differential equations[M].San Diego:Academic press,1999.
  • 8SONG S M,ZHANG B Q,WEI X Q,etal.Asymptotical stability analysis of " PD+" controller for spacecraft attitude tracking system[C].8th World Congress on Intelligent Control and Automation,July 7-9,2010,Jinan,China,2010:3908-3913.
  • 9TIWARI P M,JANARDHANAN S,NABI M U.A finite-time convergent continuous time sliding mode controller for spacecraft attitude control[C].11th International Workshop on Variable Structure Systems,June 26 28,2010,Mexico City,Mexico,2010:399-403.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部