期刊文献+

Flooding impact on the distribution of microbial tetraether lipids in paddy rice soil in China

Flooding impact on the distribution of microbial tetraether lipids in paddy rice soil in China
原文传递
导出
摘要 Isoprenoid and branched glycerol dialkyl glycerol tetraethers (GDGTs) lipids were studied in flooded and non-flooded paddy soil in Wuhan, central China, to examine the response of the GDGTs distribution to the soil flooding. Samples were collected before and after the soil flooding in four specific months. Both core (CL) and intact polar (IPL) GDGTs were quantified. Increase in the abundance of archaeol and caldarchaeol may be indicative of the occurrence of methanogens in the flooded soil. A negative correlation was observed between the ratio of IPL branched GDGT-IIa to GDGT-Ia and the soil pH. The rise of the soil pH in the acid soil is known to be controlled by the redox conditions resulting from flooding. Thus, the branched GDGTs distribution may be controlled by the water content in the paddy soil. In addition, we suggest that the anoxic conditions resulting from flooding may also control the abundance of branched GDGTs relative to crenarchaeol, which in turn results in the increase of branched and isoprenoidal tetraethers (BIT) values, the index for the terrestrial input to the marine sediments. Isoprenoid and branched glycerol dialkyl glycerol tetraethers (GDGTs) lipids were studied in flooded and non-flooded paddy soil in Wuhan, central China, to examine the response of the GDGTs distribution to the soil flooding. Samples were collected before and after the soil flooding in four specific months. Both core (CL) and intact polar (IPL) GDGTs were quantified. Increase in the abundance of archaeol and caldarchaeol may be indicative of the occurrence of methanogens in the flooded soil. A negative correlation was observed between the ratio of IPL branched GDGT-IIa to GDGT-Ia and the soil pH. The rise of the soil pH in the acid soil is known to be controlled by the redox conditions resulting from flooding. Thus, the branched GDGTs distribution may be controlled by the water content in the paddy soil. In addition, we suggest that the anoxic conditions resulting from flooding may also control the abundance of branched GDGTs relative to crenarchaeol, which in turn results in the increase of branched and isoprenoidal tetraethers (BIT) values, the index for the terrestrial input to the marine sediments.
出处 《Frontiers of Earth Science》 SCIE CAS CSCD 2013年第3期384-394,共11页 地球科学前沿(英文版)
基金 We would thank Dr. WeiHua Ding for analytical assistance with the HPLC-MS equipment. This work was supported by the National Basic Research Program of China (No. 2011CB808800), the National Natural Science Foundation of China (Grant Nos. 40930210 and 40921062) and the 111 program (B08030) in China.
关键词 glycerol dialkyl glycerol tetraethers (GDGTs) soil flooding soil pH redox conditions GDGTs distribution branched and isoprenoidal tetraethers (BIT) glycerol dialkyl glycerol tetraethers (GDGTs), soil flooding, soil pH, redox conditions, GDGTs distribution, branched and isoprenoidal tetraethers (BIT)
  • 相关文献

参考文献1

二级参考文献5

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部