期刊文献+

Changes in hourly precipitation may explain the sharp reduction of discharge in the middle reach of the Yellow River after 2000

Changes in hourly precipitation may explain the sharp reduction of discharge in the middle reach of the Yellow River after 2000
原文传递
导出
摘要 The Hekou-Longmen reach, together with local floods, is the main source area for coarse sedimenta- tions into the Yellow River. When total rainfall slightly increased in the area, discharge dramatically decreased by 40%-70% after the year of 2000, and attracting extensive attention in the context of global climate change. High temporal resolution precipitation (timescales between 1 and 4 h) data from the June to September period from 270 rain gauges over the past three decades was mined in order to help explain the phenomenon. Each rainfall event was classified as light/moderate rain, large rain, heavy rain or rainstorm by the event's rainfall amount, and further classified as low intensity rain, medium intensity rain and high intensity rain by the event's rainfall intensity. The Mann-Kendall trend test was applied to detect the presence and significance of monotonic trends, and to find the change points in the mean and variance of the precipitation characteristics series, including the amount, intensity, frequency and duration of each rainfall category. Results show that although the total amount of precipitation has slightly increased, the average rainfall intensity has significantly decreased. The larger change happened in light/moderate rain events and low/medium intensity rain events, and the intensity changes have a great extent occurred around the threshold of Non-Runoff Rainfall regime, which was proposed for the approximate calcula- tion of initial losses. Changes in rainfall distribution between different classes of the Runoff Rainfall regime in the 2000s could lead to 0.9 mm less runoffdepth (17.3% of the total reduction) than the 1980-1999 period. The study indicates that changes in hourly precipitation may be responsible for the sharp reduction of discharge. The Hekou-Longmen reach, together with local floods, is the main source area for coarse sedimenta- tions into the Yellow River. When total rainfall slightly increased in the area, discharge dramatically decreased by 40%-70% after the year of 2000, and attracting extensive attention in the context of global climate change. High temporal resolution precipitation (timescales between 1 and 4 h) data from the June to September period from 270 rain gauges over the past three decades was mined in order to help explain the phenomenon. Each rainfall event was classified as light/moderate rain, large rain, heavy rain or rainstorm by the event's rainfall amount, and further classified as low intensity rain, medium intensity rain and high intensity rain by the event's rainfall intensity. The Mann-Kendall trend test was applied to detect the presence and significance of monotonic trends, and to find the change points in the mean and variance of the precipitation characteristics series, including the amount, intensity, frequency and duration of each rainfall category. Results show that although the total amount of precipitation has slightly increased, the average rainfall intensity has significantly decreased. The larger change happened in light/moderate rain events and low/medium intensity rain events, and the intensity changes have a great extent occurred around the threshold of Non-Runoff Rainfall regime, which was proposed for the approximate calcula- tion of initial losses. Changes in rainfall distribution between different classes of the Runoff Rainfall regime in the 2000s could lead to 0.9 mm less runoffdepth (17.3% of the total reduction) than the 1980-1999 period. The study indicates that changes in hourly precipitation may be responsible for the sharp reduction of discharge.
出处 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2013年第5期756-768,共13页 环境科学与工程前沿(英文)
关键词 precipitation intensity Mann-Kendall rank statistic spatial and temporal distribution climatic change precipitation intensity, Mann-Kendall rank statistic, spatial and temporal distribution, climatic change
  • 相关文献

参考文献2

二级参考文献20

共引文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部