期刊文献+

基于改进HHT的风力发电系统轴承故障诊断 被引量:4

Fault Diagnosis for Rolling Bearing of Wind Turbine Based on Improved HHT
下载PDF
导出
摘要 轴承是风力发电机组中故障率较高的部件,其故障信号为非线性、非平稳信号,经验模态分解是一种自适应的信号处理方法,可用来分析此类信号,但是模态混叠使得经验模态分解无法准确地将固有模态分离出来。针对此问题,采用总体平均经验模态分解进行改进,利用高斯白噪声的频率均匀分布的统计特性,抑制模态混叠现象,并通过计算固有模态函数与故障信号的互信息来剔除虚假分量,从而得到更准确的Hilbert-Huang谱,由此提取故障信息,判断故障类型。仿真试验及轴承故障诊断实例均证明了该方法的有效性。 Rolling bearing is an important component of wind turbine, which has a high failure rate. The fault signal of rolling bearing is nonlinear and non-stationary. Empirical mode decomposition(EMD) is an adaptive data analysis method which is able to process nonlinear and non-stationary signal. However, mode mixing makes it difficult to decompose the intrinsic mode functions accurately. Therefore, ensemble empirical mode decomposition(EEMD) is applied to solve this problem by utilizing the advantage of the statistical characteristics of white noise. The mutual information between IMFs and fault signal is calculated to distinguish the false modes. Therefore, a more accurate Hilbert-Huang spectrum is obtained, and the characteristics frequencies are extracted, then the fault is diagnosed. The simulation and experiments of real fault diagnosis verify the effectivehess of the proposed method.
出处 《测控技术》 CSCD 北大核心 2013年第9期40-44,共5页 Measurement & Control Technology
基金 国家自然科学基金资助项目(61104183) 教育部新世纪优秀人才支持计划项目(NCET-10-0437)
关键词 风力发电系统 滚动轴承 故障诊断 Hilbert—Huang变换 总体平均经验模态分解 互信息 wind turbine rolling bearing fault diagnosis HHT EEMD mutual information
  • 相关文献

参考文献14

  • 1Ribrant J. Reliability performance and maintenance : a survey of failures in wind power systems [ D ]. Stockholmsyndrome: Royal Institute of Technology, 2006.
  • 2WANG Huaqing,LIKe,SUN Hao,CHEN Peng.Feature Extraction Method Based on Pseudo-Wigner-Ville Distribution for Rotational Machinery in Variable Operating Conditions[J].Chinese Journal of Mechanical Engineering,2011,24(4):661-668. 被引量:8
  • 3Liu J,Wang W, Golnaraghi F. An extended wavelet spectrum for bearing fault diagnostics [ J ]. IEEE Transactions on In- strumentation and Measurement, 2008,57 (12).
  • 4Huang N E, Shen Z, Long S R, et al. The empirical mode de- composition and the Hilbert spectrum for nonlinear and non- stationary time series analysis [ J ]. Proceedings of the Royal Society A : Mathematical, Physical and Engineering Sciences, 1998,454( 1971 ) :903 -995.
  • 5Jimenez J R , Wu H R. Empirical mode decomposition as a tool for data analysis[ C ]//2011 6- IEEE/Conference on In- dustrial Electronics and Applications. 2011:2538 - 2543.
  • 6Rilling G, Flandrin P, Goncalves P. On empirical mode de- composition and its algorithms[ C ]//Proceedings of 6th IEEE EURASIP Workshop on Nonlinear Signal and Image Process- ing. 2003 : 8 - 11.
  • 7Cheng J S, Yu D J, Yang Y, et al. Application of support vec- tor regression machines to the processing of end effects of Hilbert-Huang transform[ J]. Mechanical Systems and Signal Processing,2007,21 (3) : 1197 - 1211.
  • 8DENG Yongjun, WANG Wei, QIAN Chengchun, WANG Zhong & DAI DejunNetwork Center, Ocean University of Qingdao. Qingdao 266003, China,Physical Oceanography Laboratory, Ocean Universily of Qingdao, Qingdao 266003, China.Boundary-processing-technique in EMD method and Hilbert transform[J].Chinese Science Bulletin,2001,46(11):954-961. 被引量:93
  • 9Wu F J, Qu L S. An improved method for restraining the end effect in empirical mode decomposition and its applications to the fault diagnosis of large rotating machinery [ J ]. Journal of Sound and Vibration ,2008,314( 3/4/5 ) :586 - 602.
  • 10Wu Z H, Huang N E. Ensemble empirical mode decomposi- tion:a noise-assisted data analysis method[ J ]. Advances in Adaptive Data Analysis ,2005,1 ( 1 ) : 1 - 49.

二级参考文献25

  • 1于波,陈涛,刘建,李鹏斌.辊压机水泥粉磨技术的研究及应用[J].新世纪水泥导报,2005,11(5):1-4. 被引量:5
  • 2COHEN L. Time-Frequency Analysis [M]. New Jersey: Prentice- Hall, 1995.
  • 3WANG H Q, CHEN E intelligent diagnosis method for a centrifugal pump using features of vibration signals [J]. Neural Computing & Application, 2009, 18(4): 397-405.
  • 4WU J D, LIU C H. Investigation of engine fault diagnosis using discrete wavelet transform and neural network [J]. Expert Systems with Applications, 2008, 35(3): 1 200 1 213.
  • 5WU J D, HSU Chuang Chin. Fault gear identification using vibration signal with discrete wavelet transform technique and fuzzy-logic inference [J]. Expert Systems with Applications, 2009, 36(2): 3 785-3 794.
  • 6ZHU Z K, YAN R Q, LUO L H, et al. Detection of signal transients based on wavelet and statistics for machine fault diagnosis [J]. Mechanical Systems and Signal Processing, 2009, 23(4): 1 076-1 097.
  • 7TSE W P, PENG Y H, YAM Richard. Wavelet analysis and envelope detection for rolling element bearing fault diagnosis-their effectiveness and flexibilities [J]. Journal of Fibration and Acoust, 2001, 123: 303-311.
  • 8CHENG J S, YU D J, YANG Y. Application of an impulse response wavelet to fault diagnosis of rolling bearings [J]. Mechanical Systems and,Signal Processing, 2005, 21 (2): 920 929.
  • 9STASZEWSKI W J, WORDEN K, TOMLINSON G R, et al. Time-frequency analysis in gear fault detection using the Wigner-Ville distribution and pattern recognition [J]. Mechanical System and Signal Processing, 1997, 11 (5): 673-692.
  • 10MENG Q F, QU L S. Rotational machinery fault diagnosis using Vigner distribution [J]. Mechanical System and Signal Processing, 1991, 5(3): 155-166.

共引文献99

同被引文献32

引证文献4

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部