期刊文献+

基于PCA稀疏描述的分布式视频编码 被引量:1

PCA Sparse Representation for Distributed Compressive Video Sampling
下载PDF
导出
摘要 在研究视频信号的非局部稀疏模型的基础上,提出了一种适合分布式视频编码的视频信号稀疏描述算法。在解码端,对非关键帧解码时,首先由已重建的关键帧生成边信息SI,然后在这两帧中寻找非关键帧当前块的L个相似块,作为一个类,最后利用这个类生成PCA子字典,并将所有块的子字典集合起来构成非关键帧的字典,进行视频重建。通过与典型的信号稀疏描述方法进行对比,实验结果显示,重建的PSNR值平均提高2 dB,主观视觉质量也有较大的提高。 In this paper, PCA dictionary based on learning is proposed by the video interframe and in- traframe non-local self-similarity. Grouping by matching is realized from key frames which are previously recovered. PCA is then applied to each group (sub-dataset) to compute the principle components, from which the sub-dictionary is constructed. The simulation results show that the proposed algorithm outper- forms many state-of-the-art algorithms in terms of PSNR and visual oerceotion.
作者 陈瑞 糜正琨
出处 《南京邮电大学学报(自然科学版)》 北大核心 2013年第4期1-5,12,共6页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金 国家自然科学基金(60872018) 江苏省研究生科研创新计划(CX10B_185Z)资助项目
关键词 压缩感知 分布式视频编码 PCA字典 非局部稀疏模型 compressive sensing distributed video coding PCA dictionary non-local self-similarity
  • 相关文献

参考文献1

二级参考文献58

  • 1[5]Stephane Mallat.信号处理的小波导引[M].杨力华,等译.北京:机械工业出版社,2003.
  • 2[1]EJ Candes. Ridgelets:Theory and Applications[D].USA:Department of Statistics, Stanford University, 1998.
  • 3[2]E J Candes. Monoscale Ridgelets for the Representation of Images with Edges[ R]. USA: Department of Statistics, Stanford University, 1999.
  • 4[3]Candes E J, D L Donoho. Curvelets[R]. USA: Department of Statistics,Stanford University, 1999.
  • 5[4]E L Pennec, S Mallat. Image compression with geometrical wavelets[A]. In Proc. of ICIP' 2000 [ C ]. Vancouver, Canada, September,2000.661-664.
  • 6[5]M N Do, M Vetterli. Contourlets[ A ] .J Stoeckler, G V Welland. Beyond Wavelets [ C ]. Academic Press, 2002.
  • 7[7]D L Donoho,M Vetterli,R A DeVore, I Daubechies. Data compression and harmonic analysis [ J ]. IEEE Trans, 1998, Information Theory-44(6) :2435 - 2476.
  • 8[8]M Vetterli. Wavelets, approximation and compression [ J ]. IEEE Signal Processing Magazine,2001,18(5) :59 - 73.
  • 9[9]R A DeVore. Nonlinear approximation[ A].Acta Numerica[ M]. Cambridge University Press, 1998.
  • 10[10]D L Donoho. Sparse component analysis and optimal atomic decomposition[J]. Constructive Approximation, 1998,17:353 - 382.

共引文献226

同被引文献11

  • 1Vijayanagar KR, Kim J, Lee Y, et al. Low complexity dis- tributed video coding [J]. Journal of Visual Communication and Image Representation, 2014, 25 (2): 361-372.
  • 2Lei TCW, Tseng FS. Study for distributed video coding archi- tectures [C] //International Symposium on Computer, Con- sumer and Control, 2014: 380-383.
  • 3Skorupa J, Slowack J, Mys S, et al. Efficient low-delaydistributed video coding [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2012, 22 (4): 530-544.
  • 4Pudlewski S, Melodia T, Prasanna A. C-dmrc Compressive distortion-minimizing rate control for wireless multimedia sensor networks [C] //7th Annual IEEE Communications Society Conference on Sensor Mesh and Ad Hoc Communications and Networks, 2010: 1-9.
  • 5Prades-Nebot J, Ma Y, Huang T. Distributed video coding using compressive sampling [C] //Picture Coding Symposium, 2009 : 1-4.
  • 6Chen HW, Kang LW, Lu CS. Dictionary learning-based dis- tributed compressive video sensing [C] //Picture Coding Sym- posium, 2010: 210-213.
  • 7Rubinstein R, Faktor T, Elad M. K-SVD dictionary-learning for the analysis sparse model [C] //IEEE International Conference on Acoustics, Speech and Signal Processing, 2012: 5405-5408.
  • 8Pandian S, Bala GJ, George BA. A study on block matching algorithms for motion estimation [J]. International Journal on Computer Science &Engineering, 2011, 3 (1): 54-58.
  • 9Kane DM, Nelson J. Sparser Johnson-Lindenstrauss trans- forms [J]. Journal oftheACM, 2014, 61 (1): 4.
  • 10Deng J, Ren G, Jin Y, et al. Iterative weighted gradient projection for sparse reconstruction [J]. Information Techno- logy Journal, 2011, 10 (7): 238-242.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部