期刊文献+

无线传感器网络中基于压缩感知的静止图像压缩方案研究 被引量:1

The Research on Compressive Sensing Based Still Image Compression in Wireless Sensor Network
下载PDF
导出
摘要 受功耗、成本和无线传输环境的限制,无线传感器网络中采集图像的节点并不适合采用传统静止图像压缩标准JPEG、JPEG2000。为了适应无线传感器网络的"轻编码、重解码"的特点,提出了一种基于压缩感知(Compressive Sensing,CS)的静止图像压缩方案。该方案在编码端进行分块测量,分块测量次数根据图像的边缘信息自适应地分配;在解码端则利用分块观测数据进行整帧重建。仿真实验表明,与已有的基于CS的图像压缩方案相比,该方案可有效地降低CS测量成本,并可在重建时消除图像的边缘模糊与块效应现象。 The traditional still image compression standard JPEG and JPEG2000 are not appropriate for a camera sensor in the wireless sensor network since it is limited by the power consumption, costs and wire- less transmission environment. In order to meet the "light encoding and heavy decoding" characteristic of the wireless sensor network, this paper proposes a novel still image compression scheme based on the compressive sensing (CS) . The scheme measures each image block at the eneoder and adaptively assign the number of measurement for each block in terms of their edge information. At the decoder, the scheme uses the measurements of each block to reconstruct the whole image. Simulation results show that the pro- posed scheme can effectively reduce the cost of CS measuring in comparison with the existing CS based image compression schemes, and it can also remove edge blurs and blocking artifacts in the reconstructed image.
出处 《南京邮电大学学报(自然科学版)》 北大核心 2013年第4期44-49,54,共7页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金 国家自然科学基金(61071091,61271240) 江苏省研究生科研创新计划(CXZZ12_0466,CXZZ11_0390) 江苏省高校自然科学研究(12KJB510019) 南京邮电大学校科研基金(NY212015) 湖北省教育厅科研重点(D20121408)资助项目
关键词 压缩感知 无线传感器网络 静止图像压缩 图像重建 分块自适应测量 平滑投影Landweber算法 compressive sensing wireless sensor network still image compression image reconstruction block-based sampling adaptively smoothed projected Landweber (SPL) algorithm
  • 相关文献

参考文献27

  • 1GREGORY K. The JPEG still picture compression standard [ J ]. Communications of the ACM, 1991,34 (4) :30 - 44.
  • 2TAUBMAN D S, MARCELLIN M W. JPEG2000 : Standard for inter- active imaging[ J ]. Proceedings of the IEEE, 2002,90 ( 8 ) : 1336 - 1357.
  • 3BARON D, DUARTE M F, WAKIN M B, et al. Distributed compres- sive sensing[ EB/OL]. (2009-01-08) [2011-11-03 ]. http://www. arxiv, org/abs/0901. 3403.
  • 4XIONG Z, ANGELOS D L, SAMUEL C. Distributed source coding for sensor networks [ J ]. IEEE Signal Processing Magazine,2004,21 (5) :80 -94.
  • 5RICHARD G B. Compressive sensing [ J ]. IEEE Signal Processing Magazine,2007,24(4) :118 - 121.
  • 6CANDES E J,ROMBERG J,TAO T. Stable signal recovery from in- complete and inaccurate measurements [ J ]. Communications on Pure and Applied Mathematics ,2006,59 ( 8 ) : 1207 - 1223.
  • 7DUARTE M F,WAKIN M B, BARANIUK R G. Fast reconstruction of piecewise smooth signals from incoherent projections[ C ]///Work- shop of Signal Processing Adaptive Sparse Structure Representation. Pacific Grove, CA : IEEE Press,2005 : 102 - 112.
  • 8DO T T, GAN L, NGUYEN N, et al. Fast and efficient compressive sensing using structurally random matrices [ J ]. IEEE Transactions on Signal Processing,2012,60( 1 ) :139 - 154.
  • 9GAN L, DO T T, TRAN T D. Fast compressive imaging using scram- bled block Hadamard ensemble [ C ]//Proceedings of the European Signal Processing Conference. Lausannne, Switzerland : IEEE Press, 2008 : 1 - 5.
  • 10CHEN S, DONOHO D. Atomic decomposition by basis puisuit[ J]. SIAM Journal on Scientific Computing,1998,20:33 -61.

二级参考文献17

  • 1E. Candes, M. Wakin. An introduction to compressive sampling [ J ]. IEEE Signal Processing Magazine, 2008,25(2) :21-30.
  • 2E. Candes, T. Tao, Robust uncertainty principle : Exact signal reconstruction from highly incomplete frequency information [J] , IEEE Trans. Inform. Theory,2006, 52:489-509.
  • 3D. L. Donoho, Compressed sensing [ J ] , IEEE Trans. In- form. Theory, 2006,52 : 1289-1306.
  • 4Y. Tsaig and D. L. Donoho, Extensions of compressed sensing [ J] , Signal Processing 2006,86:533-548.
  • 5Thong T. Do, Yi Chen, Dzung T. Nguyen, Nam Nguy- en, Lu Gan and Trac D. Tran. Distributed compressed video sensing [ C ] , in Proceedings of the International Conference on Image Processing, Cairoa, Egypt, 2009 - 1393-1396.
  • 6E. Candes, J. Romberg, Sparsity and incoherence in com- pressive sampling [ J ], Inverse Prob., 2007, 23 ( 3 ) : 969-985.
  • 7E. Candes and J. Romberg, Robust signal recovery from in- complete observations[ C ], in Proc. ICIP ,2006 : 1281-1284.
  • 8T. T. Do, L. Gan, N. Nguyen, efficient compressive sampling matrices [ J ] , IEEE Trans. and T. D. Tran, Fast and using structurally random Signal Processing, 2012.(60) :139-154.
  • 9Lu Gan, Thong T. Do and Trac D. Tran, Fast compressive imaging using scrambled block hadamard ensemble [ C ] , in Proceedings of European Signal Processing Conf, Switz- erland, 2008.
  • 10L. Gan, Block compressed sensing of natural images [ C ] , in Proceedings of the International Conference on Digital Signal Processing, Cardiff, UK, 2007 : 403 -406.

共引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部