期刊文献+

HAC法在平稳过程之间伪回归中的适用性研究 被引量:1

The Applicability of HAC Methods in Spurious Regression between Stationary Processes
下载PDF
导出
摘要 通过蒙特卡罗模拟技术揭示各种HAC法在平稳过程伪回归中的适用性。研究发现,与核权函数HAC相比,预白化HAC法具有明显的优势;进一步的研究表明相对于被解释变量的持久性,解释变量的持久性对HAC的影响较大;当数据过程是高阶自回归过程时,在样本容量不是很大的情况下预白化方法的拒绝率会随着阶数增加而增大,只有在样本容量较大和BIC信息准则情况下预白化HAC的拒绝率才接近检验水平。 The paper reveals the applicability of HAC methods in spurious regression between stationary processes through Monte-Carlo simulation. The result shows that prewhitening HAC methods have obvious superiority to kernel-based estimators. Further study shows that the persistence of explanatory variables has greater effect on spurious regression than that of explained variable. When data processes are high-order autoregressive processes, the rejection rates of prewhitening HAC methods increase with the increasing order when sample size isn't very large. However, the rejection rates of prewhitening HAC methods is close to test size when sample size is very large and BIC information criterion is adopted.
出处 《统计与信息论坛》 CSSCI 2013年第9期14-21,共8页 Journal of Statistics and Information
基金 国家社会科学基金项目<弱平稳过程之间的伪回归研究>(11BJY012) 教育部人文社会科学研究规划基金项目<无漂移平稳时间序列下伪回归的统一研究框架:基于改进的HAC法>(10YJA790113) 湖南省自然科学基金项目<零售供应链中的渠道竞争与效率研究>(09JJ6107)
关键词 平稳过程 伪回归 预白化 HAC法 stationary processes spurious regression prewhitening HAC methods
  • 相关文献

参考文献13

  • 1Granger C W J, Hyung N,Jeon Y. Spurious Regressions with Stationary Series [J]. Applied Economics, 2001,33(7).
  • 2Ventosa-Santauldria D. Spurious Regression [J]. Journal of Probability and Statistics, 2009(1).
  • 3Agiakloglou Christos. Evidence of ARCH(l) Errors in the Context of Spurious Regressions [J]. Communications in Statistics-Simulation and Computation, 2009,38 (9).
  • 4刘汉中.无漂移平稳过程下的伪回归分析——基于修正的HAC方法[J].数量经济技术经济研究,2010,27(11):142-154. 被引量:12
  • 5刘汉中.基于自相关视角的弱平稳过程之间的伪回归分析[J].统计与信息论坛,2012,27(4):10-16. 被引量:7
  • 6Sollis Robert. Spurious Regression: A High-order Problem [J]. Economics Letters 2011,111 (2).
  • 7Newey Whitney, Kenneth West. Automatic Lag Selection in Covarianee Matrix Estimation [J]. Review of Economic Studies, 1994(4).
  • 8Andrews D W K, Monahan J C. An Improved Heteroskedasticity and Autoeorrelation Consistent Covarianee Matrix [J]. Eeonometriea, 1992,60(4).
  • 9Den Haan W J, Levin A T. A Practitioner's Guide to Robust Covariance Matrix Estimation[C]. Handbook of Statistics: Robust Inference, New York:Elsevier Science I3. V. , 1997.
  • 10Christiano L J,Den Haan Wouter J. Small Properties of GMM for Business Cycle Analysis[J]. Journal of Business and Economic Statistics, 1996,14(3).

二级参考文献26

  • 1马薇,王键.计量经济模型伪回归表现形式及其易生经济变量研究[J].现代财经(天津财经大学学报),2005,25(6):52-55. 被引量:12
  • 2Chan, K.S. , H. Tong. , 1985, Amultiple threshold model AR (1) model[J]. Journal of Applied Probability, No. 2, 267-279.
  • 3Granger, C.W.J. and P. Newbold, 1974, Spurious Regressions in Economics [J], Journal of Econometrics, No. 2, 111-120.
  • 4Phillips, P.C. B, 1986, Understanding Spurious Regressions in Econometrics [J], Journal of Econometrics, No. 3, 311-340.
  • 5Entorf, H. , 1997, Random Walks with Drifts.. Nonsense Regression and Spurious Fixed -Effect Estimation [J]. Journal of Econometrics, No. 2, 287-296.
  • 6Phillips, P.C. B, 1998, New Tools for Understanding Spurious Regressions [J].Econometrica, No. 6, 1299- 1325.
  • 7Granger, C.W.J., N. Hyung and Y. Jeon. , 1998, Spurious Regressions with Stationary Series [J], Department of Economics, USCD, Working Paper.
  • 8Kim, Tae- Hwan. , Young - Sook. Lee and P. Newbold. , 2004, Spurious Regressions with Stationary Processes Around Linear Trends [J], Economics Letters, No. 2, 257-262.
  • 9Antonio E. Noriega and Daniel Ventosa - Santaularia, 2006, Spurious Regression under broken trend stationarity [J], Journal of Time Series, No. 5, 671-684.
  • 10Jen-Je Su, 2008, A Note on Spurious Regressions Between Stationary Series[J].Applied Eco- nomics Letters, No. 15, 1225-1230.

共引文献12

同被引文献11

  • 1Evans G B A,Savin N E. Testing for Unit Roots [J]. Econometriea, 1984 (5).
  • 2Phillips P C B. Towards a Unified Asymptotic Theory for Autoregression[J].Biometrika, 1987 (3).
  • 3Phillips P C B. Regression Theory for Near--Integrated Time Series [J]. Econometrica, 1988 (5).
  • 4张华节,黎实.初始条件对LLC检验局部渐进势的影响研究[C].中国数量经济学年会论文集,2012.
  • 5Torous W R, Yan Valkanov S. On Predicting Stock Returns with Nearly Integrated Explanatory Variables[J]. Journal of Business, 2004 (4).
  • 6Elliott G, Stock J. Inference in Time Series Regression When the Order of Integration of a Regressor is Unknown[J].Econometric Theory, 1994 (10).
  • 7Elliott G. On the Robustness of Cointegration Methods When Regressors Almost Have Unit Roots [J].Econometrica, 1998 (1).
  • 8Cavanagh C L, Elliott G, Stock J H. Inference in Models with Nearly Integrated Regressors [J]. Econometric Theory, 1995 (5).
  • 9Saikkonen P. Asymptotically Efficiency Estimation of Cointegration Regressions[J].Econometric Theory, 1991 (1).
  • 10Chan N H, Wei C Z. Asymptotic Inference for Nearly Nonstationary AR(1) Processes[J]. Annals of Statistics, 1987 (3).

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部