摘要
通过蒙特卡罗模拟技术揭示各种HAC法在平稳过程伪回归中的适用性。研究发现,与核权函数HAC相比,预白化HAC法具有明显的优势;进一步的研究表明相对于被解释变量的持久性,解释变量的持久性对HAC的影响较大;当数据过程是高阶自回归过程时,在样本容量不是很大的情况下预白化方法的拒绝率会随着阶数增加而增大,只有在样本容量较大和BIC信息准则情况下预白化HAC的拒绝率才接近检验水平。
The paper reveals the applicability of HAC methods in spurious regression between stationary processes through Monte-Carlo simulation. The result shows that prewhitening HAC methods have obvious superiority to kernel-based estimators. Further study shows that the persistence of explanatory variables has greater effect on spurious regression than that of explained variable. When data processes are high-order autoregressive processes, the rejection rates of prewhitening HAC methods increase with the increasing order when sample size isn't very large. However, the rejection rates of prewhitening HAC methods is close to test size when sample size is very large and BIC information criterion is adopted.
出处
《统计与信息论坛》
CSSCI
2013年第9期14-21,共8页
Journal of Statistics and Information
基金
国家社会科学基金项目<弱平稳过程之间的伪回归研究>(11BJY012)
教育部人文社会科学研究规划基金项目<无漂移平稳时间序列下伪回归的统一研究框架:基于改进的HAC法>(10YJA790113)
湖南省自然科学基金项目<零售供应链中的渠道竞争与效率研究>(09JJ6107)
关键词
平稳过程
伪回归
预白化
HAC法
stationary processes
spurious regression
prewhitening
HAC methods