摘要
随着Web服务的广泛使用和互联网上服务数量的增加,如何向用户提供最佳的服务选择列表成为了新的挑战。Web服务个性化推荐实现了由被动接受用户请求向主动感知用户需求的转变。个性化的Web服务推荐方法已经成为Web服务发现和选择的有效辅助手段。Web服务的个性化推荐技术也成为了近年来服务计算领域的研究热点。对当前Web服务个性化推荐的文献进行了归类分析,总结了当前Web服务个性化推荐的技术现状、研究方法和实验的数据集,列出了未来Web服务个性化推荐研究热点和挑战。
Abstract: With the widespread usage of web service and the increase of the number of services in In ternet, how to recommend the best service selection list is gradually becoming a great challenge. Person- alized technology can change the passive acceptance of user request to active awareness of user require ment. Personalized web service recommendation has gradually become the effective supplementary meth- od for service discovery and selection, thus becoming one of research hotspots in service computing field. We analyze and review the techniques and approaches existing in current literatures that are related to personalized web service recommendation. Then we survey the state-of-the-art techniques and methods on personalized recommendation of web service and collect open dataset that are used to validate the per- sonalized web service recommendation approach. Finally, a few of research hotspots and challenges of personalized web service recommendation are outlined.
出处
《计算机工程与科学》
CSCD
北大核心
2013年第9期132-140,共9页
Computer Engineering & Science
基金
国家973计划资助项目(2014CB340401
2014CB340404)
国家自然科学基金资助项目(61373037
61202031
61100017)
国家科技支撑计划项目(2012BAH07B01)
国家云计算示范工程"中小企业管理云应用研发与产业化"项目
关键词
Web服务推荐
协同过滤
个性化
服务质量
web service recommendation
collaborative filter
personalization
quality of service