期刊文献+

使用Hadoop实现应用商店中的相关推荐模型 被引量:3

Implementation of Associative Commendation Model of Application Store by Using Hadoop
下载PDF
导出
摘要 在应用下载网站上,当用户浏览或下载某应用时,说明他对这个应用产生一定兴趣,如果网站显示和当前应用类似的其他应用,那么可以增加用户继续下载应用的概率。将基于行为推荐和基于内容推荐结合成推荐模型,并基于Hadoop进行实现,可以处理较大量的数据并得到较优的推荐结果。 When users are browsing or downloading one application on the application downloading website, it indicates that they are interested in the application. If there has other similar applications displayed for the user, there is a big possibility that the he will download them as well. A recommendation model which combined by the user-based and item-based recommendation, and implement it using the map and reduce method in Hadoop can process the big data and get the satisfying results.
出处 《现代计算机》 2013年第17期20-23,共4页 Modern Computer
关键词 关联推荐 余弦相似度 置信度 提升度 Associate Recommendation Cosine Similarity Confidence Lift
  • 相关文献

参考文献6

  • 1Asim Ansari,Skander Essegaier,Rajeev Kohli. Internet Rec-ommendation Systems[J].Journal of marketing Research,2000,(03):363-375.
  • 2Weiyang Lin,Sergio A. Alvarez,Carolina Ruiz. Collaborative Recommendation via Adaptive Association Rule Mining[D].Worcester Polytechnic Institute:Dept.of Computer Science,2000.
  • 3IEEE Computer Society,Technical Committee on Computa-tional Intelligence,Web Intelligence Consortium. Pro-ceedings of the 2003 IEEEIWIC International Conference on Web Intelligence[A].Canada:Jiming Liu,2003.524-527.
  • 4Christopher D Manning,Prabhakar Raghavan,Hinrich Schtze. Introduction to Information Retrieval[D].New York:cambridge University Press,2008.
  • 5Tom White.Hadoop权威指南(中文第二版)[M]北京:清华大学出版社,20114-15.
  • 6Wikipedia. Discounted Cumulative Gain[OL].http://en.wikipedia.org/wiki/Discounted_cu-mulative_gain,2013.

同被引文献13

引证文献3

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部