期刊文献+

基于遗传算法的高空作业平台调平铰点优化控制策略 被引量:1

Optimization control strategy of the leveling hinge point of aerial work platform based on genetic algorithm
下载PDF
导出
摘要 针对高空作业平台调平铰点优化问题,根据油缸的同步反向原理,建立以调平三连杆机构参数为设计变量、最小调平误差为目标函数的多变量优化数学模型。适应度函数参数选择引用模糊子集,将改进的遗传算法应用于机构优化设计中。该算法群体搜索能稳定收敛得到全局最优解,提高了进化速度和精度。优化结果和回代仿真表明该方法的可行性和有效性。 Considering the facts that optimization of the hinge point of leveling of aerial work platform,a multu-objective optimization mathematical model was established of using the parameters of three linkage of leveling as design variables and the smallest error of leveling as the objective function,according to the principle of cylinder of synchronization and reverse.Fuzzy sets were adopted by fitness function parameters and the improved genetic algorithm was applied to optimal design of mechanism.
出处 《建筑机械》 2013年第9期79-82,20,共4页 Construction Machinery
  • 相关文献

参考文献12

  • 1Himmelblau, D. M. Applied Nonlinear Programming. [ M ] New York: McGraw-Hill, lnc .1972.
  • 2林丹,李敏强,寇纪凇.基于遗传算法求解约束优化问题的一种算法[J].软件学报,2001,12(4):628-632. 被引量:72
  • 3刘扬,杨建军,魏立新,战红.基于混合遗传算法的配电网络重构优化[J].系统工程理论与实践,2004,24(11):122-127. 被引量:16
  • 4Holland, J.H. Adaptation in natural and artificial sys- tems: An introductory analysis with application to biol- ogy, control, and artificial intelligence .1st edition, Ann Arbor, MI: The University of Michigan Press, 1975; 2ndedition, Cambridge, MA: MITPress, 1992.
  • 5Goldberg, D.E.etc Genetic Algorithms in Search, Optimization and Machine Learning . Readings, [ M ] MA. Addison-Wesley Pubishing Company, 1989.
  • 6林晓辉,黄卫,林晓通,刘娜.平面连杆变幅机构轨迹综合遗传退火优化算法的研究[J].计算机辅助设计与图形学学报,2001,13(8):724-729. 被引量:6
  • 7LinXiaotong, LinXiaohui. HuangWei, WangNingsh- eng, Compound Genetics Annealing Optimal Algorithm for Realization of Locus Deduction of a Plane Link Journal of southeast University ( English Edition ) Dec.2002 Vol.18 No.4.
  • 8邓堃,邹慧君,郭为忠.一种新的混合遗传算法及其在机构优化中的应用[J].上海交通大学学报,2006,40(2):243-247. 被引量:6
  • 9E.Lugo-Gonzalez.L.H.Hernandea-Gomez, Perfor- mance optimization of GA based planar mechanism syn- thesis [ C ]. IEEE Electronics, Robotics and Automo- tive Mechanics Conference 2010.26: 126-131.
  • 10Davis, L., ( ed ) .Handbook of genetic algorithms. Van Nostrand Reinhold, New York, 1991.

二级参考文献24

  • 1王雪梅,王义和.模拟退火算法与遗传算法的结合[J].计算机学报,1997,20(4):381-384. 被引量:123
  • 2康立山.非数值并行算法(第1册).模拟退火算法[M].北京:科学出版社,1998.22-55.
  • 3刘勇.非数值并行算法(第2册).遗传算法[M].北京:科学出版社,1998.75-132.
  • 4[1]Himmelblau, D.M. Applied Nonlinear Programming. New York: McGraw-Hill, Inc., 1972.
  • 5[2]Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning. Readings, MA: Addison-Wesley Publishing Company, 1989.
  • 6[3]Michalewicz, Z., Schoenauer, M. Evolutionary algorithms for constrained parameter optimization problems. Evolutionary Computation Journal, 1996,4(1):1~32.
  • 7[4]Powell, D., Skolnick, M. Using genetic algorithms in engineering design optimization with nonlinear constraints. In: Forest, S., ed. Proceedings of the 5th International Conference on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann Publishers, 1993. 424~430.
  • 8[5]Deb, K., Agrawal, S. A niched-penalty approach for constraint handling in genetic algorithms. In: Montana, D., ed. Proceedings of the ICANNGA-99. Portoroz, Slovenia, 1999. 234~239.
  • 9[6]Schoenauer, M., Michalewicz, Z. Boundary operators for constrained optimization problems. In: Baeck, T., ed. Proceedings of the 7th International Conference on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann Publishers, 1997. 322~329.
  • 10[7]Michalewicz, Z., Nazhiyath, G., Michalewicz, M. A note on usefulness of geometrical crossover for numerical optimization problems. In: Angeline, P., Baeck, T., eds. Proceedings of the 5th Annual Conference on Evolutionary Programming. Cambridge, MA: MIT Press, 1996. 325~331.

共引文献96

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部