摘要
本文构造了一类具有Markov性质的分段扩张线性映射,计算表明其具有正的李雅普诺夫指数.通过理论分析,证明了其极限分布是均匀分布,并给出了其最小周期的计算公式.通过分析符号熵测度应用于此系统时的具体涵义,指出该系统的复杂度与系统的最小周期之间存在着矛盾关系,说明了此系统具有可控的复杂度并给出了其复杂度随系统参数变化时的理论极限公式.通过统计测试和复杂度测试表明,此系统产生的混沌序列服从均匀分布,而通过参数的调整该系统的符号熵可以接近其理论极限,而与Logistic映射和斜帐篷映射的基于近似熵和符号熵的对比实验可知,本文所提系统具有更高的复杂度,并有更长的最小周期.这表明此系统比较适合用于构造保密通信系统.
In this article, a kind of piecewise expanding linear system is constructed. It has a positive Lyapunov exponent as calculated. It is proved that the system has a uniform limit distribution The formula of the least period of the system is also presented. It is indicated that there is a contradictory relationship between the complexity and the least period of the system when the symbol entropy is applied to the system. The theoretical limit of the complexity of the system with changing parameters is presented. Simulation of the system shows that the sequence generated by the chaos is uniformly distributed. It also tells that the system can have higher complexity but longer least-period than the logistic system and the Tent-Map system. Experiments show that the system is suitable for constructing the cipher.
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2013年第17期89-96,共8页
Acta Physica Sinica
基金
国家重点基础研究发展计划(973计划)(批准号:2007CB311201)
吉林省科技发展计划(批准号:20130522120JH)资助的课题~~