期刊文献+

Chodorow型耦合腔慢波结构色散特性和耦合阻抗理论分析 被引量:4

Analysis of the dispersion and interaction impedance for a coupled cavity slow wave structure with double in-line slots in TWT
原文传递
导出
摘要 本文建立了Chodorow型耦合腔慢波结构的解析模型,利用并矢格林函数结合矩量法求解了场匹配方程,给出了色散方程和耦合阻抗的计算式,并数值计算出一个X波段Chodorow型慢波结构的高频特性.结果表明,本文方法的色散特性以及耦合阻抗与仿真软件HFSS计算的结果有很好的一致性,且计算效率更高,同时精度远高于等效电路法,对工程设计有好的参考价值. An analytical model is presented in this paper for a coupled cavity slow-wave structure (CCSWS) with double in-line slots, also known as the "Chodorow" structure. Under matching boundary conditions in conjunction with Green's function techniques and moment method (MOM), the formulae for discussing the high frequency characteristics of the SWS, including dispersion and interaction impedance, are given. The frequency characteristics for an X band Chodorow structure are calculated using these formulae, Ansoft HFSS code and equivalent circuit model. Results show that the dispersion and interaction impedance obtained with the formulae are in good agreement with those calculated by Ansoft HFSS code, while its calculation rate is more rapid than that with the code, and its calculation precision is higher than that with equivalent circuit method, which is helpful for the engineering design.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2013年第17期185-194,共10页 Acta Physica Sinica
基金 国家自然科学基金(批准号:11205162)资助的课题~~
关键词 Chodorow型耦合腔慢波结构 色散特性 耦合阻抗 场匹配 Chodorow structure coupled cavity SWS, dispersion, interaction impedance, field matching method
  • 相关文献

参考文献19

  • 1Larsen P B, Abe D K, Cooke S J, Levush B, Antonsen T M, Myers R E 2010 IEEE Trans. on Plasma Science 38 1244.
  • 2Cusick M, Begum R, Gajaria D, Grant T, Kolda R Legarra J, Meyer C, Ramirez-Aldana J L, Pedro D S, Stockwell B, Yamane G 2012 IEEE International Vacuum Electronics Conference (IVEC2012) Monterey, USA Apr. 24-26 227.
  • 3Wiejak W 2010 18th International Conference on Microwaves Radar and Wireless Communications Vilnius, Lithuania Jun. 14-16.
  • 4Chodorow M, Nalos E J 1956 Proceedings of the IRE 649.
  • 5Gilmour A S 2011 Principles of Klystrons, Traveling Wave Tubes, Mag- netrons, Crossed-Field Amplifiers and Gyrotrons (Norwood: Artech House) 422.
  • 6Cumow H J 1965 IEEE Trans. on Microwave Theory and Techniques 13 671.
  • 7Carter R G, Liu S K 1986 IEEProceedings H 133.
  • 8Christie V L, Kumar L, Balakrishnan N 2002 Microwave and Optical Technology Letters 35 322.
  • 9Dialetis D, Chernin D P, Cooke S J, Antonsen T M, Chang C L, Levush.B 2005 IEEE Trans. on Electron Devices 52 774.
  • 10Bai C J, Li J Q, Hu Y L, Yang Z H, Li B 2012 Acta Phys. Sin. 61 178401.

同被引文献49

  • 1陈妍红,王文祥,岳玲娜,宫玉彬.同轴交错膜片加载慢波线的分析[J].强激光与粒子束,2005,17(2):241-244. 被引量:1
  • 2王文祥,余国芬,宫玉彬.行波管慢波系统的新进展──全金属慢波结构[J].真空电子技术,1995,8(5):30-37. 被引量:15
  • 3Einstein A, Podolsky B, Rosen N 1935 Phys. Rev. 47 777.
  • 4Guo L, Liang X T 2009 Acta phys. Sin. 58 50 (in Chinese).
  • 5Lu D M 2013 Acta Optica Sinica 33 0127001 (in Chinese).
  • 6Wootters W K 1998 Phys. Rev. Lett. 80 2245.
  • 7Lu D M 2011 Acta phys. Sin. 60 090302 (in Chinese).
  • 8Wong A, Christensen N 2001 Phys. Rev. A 63 044301.
  • 9Zhang Y J, Zhou Y, Xia Y J 2008 Acta Phys. Sin. 57 21 (in Chinese).
  • 10Wu C, Fang M F 2010 Chin. Phys. B 19 020309.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部