期刊文献+

InAlN材料表面态性质研究 被引量:2

Surface states of InAlN film grown by MOCVD
原文传递
导出
摘要 运用电流-电压(I-V),变频电容-电压(C-V)和原子力显微镜(AFM)技术研究In组分分别为15%,17%和21%的Ni/Au/-InAlN肖特基二极管InAlN样品表面态性质(表面态密度、时间常数和相对于InAlN导带底的能级位置).I-V和变频C-V方法测量得到的实验结果表明,随着In组分增加,肖特基势垒高度逐渐降低,表面态密度依次增加.变频C-V特性还表明,随着测试频率降低,C-V曲线有序地朝正电压方向移动,该趋势随着In组分的增加而变得更加明显,这可能归结于InAlN表面态的空穴发射.AFM表面形貌研究揭示InAlN表面粗糙度增加可能是表面态密度增加的主要原因. The surface state properties (such as surface state density, time constant and level position related to the bottom of InAIN con- duction band) of Ni/Au/-InA1N Schottky barrier diodes with nearly lattice matched (InN = 18%) and tensilely (15%) or compressively (21%) strained InA1N barrier layer were evaluated, by using current-voltage (I-V), frequency-dependent capacitance-voltage (C-V) measurements and atomic force microscope (AFM) images. It was found that, with increasing content of In the surface state density increased and the barrier height of the Schottky contacts decreased, respectively. The C-V curves shifted toward the positive bias val- ues with reducing measured frequencies, which became more apparent with increasing In content. It may be due to the hole emission from the surface states of Ni/Au/-InA1N Schottcky contacts. Atomic force microscope (AFM) images indicated that the InA1N surface became rougher with increasing In content, which may be the main reason for the increased surface state densities.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2013年第17期439-445,共7页 Acta Physica Sinica
基金 国家重点基础研究发展计划(973计划)(批准号:2012CB619303,2012CB619304) 国家自然科学基金(批准号:61225019,11023003,10990102) 国家高技术研究发展计划(863计划)(批准号:2011AA050514,2011AA03A103,2011AA03A111) 教育部高等学校博士学科点专项科研基金资助项目资助的课题~~
关键词 不同In组分的InAlN材料 表面态 电流 电压特性 变频电容 电压特性 InA1N materal with different In content, surface states, I-V characteristics, frequency dependent C-Vcharacteristics
  • 相关文献

参考文献25

  • 1Yue Y Z, Hu Z Y, Guo J, Sensale-Rodriguez B, Li G W, Wang R H, Faiza F, Fang T, Song B, Gao X, Guo S P, Kosel T, Snider G, Fay P, Jena D, Xing H L 2012 IEEE Electron Device Lett. 33 988.
  • 2Maier D, Alomari M, Grandjean N, Carlin J F, Diforte-Poisson M A, Dua C, Delage S, Kohn E 2012 IEEE Electron Device Lett. 33 985.
  • 3Lee H S, Piedra D, Sun M, Gao X, Guo S, Palacios T 2012 IEEE Elec- tron Device Lett. 33 982.
  • 4Ttilek R, Ilgaz A, G6kden S, Teke A, Ozttirk M K, Kasap M, 6zelik S, Arslan E, Ozbay E 2009 J. AppL Phys. 105 013707.
  • 5Tirelli S, Marti D, Sun H, Alt A R, Carlin J F, Grandjean M N, Bolog- nesi C R 2011 IEEE Electron Device Lett. 32 13648.
  • 6Choi S, Kim H J, Lochner Z, Zhang Y, Lee Y C, Shen S C, Ryou J H, Dupuis R D 2010 AppL Phys. Lett. 96 243506.
  • 7Mikulics M, Stoklas R, Dadgar A, Greguovi D, No'vik J, Griitzmacher D, Krost A, Kordo P 2010 Appl. Phys. Lett. 97 173505.
  • 8Lin F 2011 Ph.D. Dissertation (Beijing: Peking University) p64.
  • 9Rhodedck E H, Williams R H 1988 Metal-Semiconducter Contacts (Oxford, U.K, Clarendon Press).
  • 10Frost S R 1987 Heterojunction Band Discontinuities physics and De- vices (North Holland, Amsterdam Press) p359.

同被引文献7

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部