摘要
应用 K.T.Chau在 A.Ruina单变量摩擦定律基础上建立的岩体系统分岔模型 ,分析了在实践中遇到的问题 ,结果表明边坡岩体系统在演化过程中会出现三个奇点类型 ,即焦点、结点及鞍点。在边坡岩体系统演化到焦点及结点处 ,即便有外界降雨因素影响 ,边坡最终会向稳定状态方向演化 ;而在鞍点处 ,边坡岩体将失稳。因此在同一地区 ,在相同外界扰动下 ,有的边坡岩体仍处于稳定状态 ,而有的边坡岩体将会失稳。
A practical problem coming from field investigation is studied in this paper by using the bifurcate model presented by K.T.Chau. This model indicates that there are three possible types of equilibrium point in the phase space during the evolution of the rock mass system, i.e., spiral point and improper point and saddle point. Affected by external perturbation, such as rainfalls, the spiral point and improper point will be in stability , but the saddle point will fail to keep stability. Also, this model explains the phenomenon observed in the field wells, i.e, why one slope will be in stability , but another will be unstable in the same field area . This model will be possibly regarded as the theoretical basis of criterion of nonlinear evolution of a rock mass system.
出处
《成都理工学院学报》
CSCD
2000年第4期379-382,共4页
Journal of Chengdu University of Technology
关键词
岩体系统
非线性演化
分岔模型
奇点
边坡
rock mass system
nonlinear evolution
bifurcate model
equilibrium point
external rainfall
instability