期刊文献+

冷却流道布局对铣槽喷管低周疲劳寿命的影响 被引量:3

Effects of Coolant Passage Layout on Low Cycle Fatigue Life of Milled Channel Nozzle
下载PDF
导出
摘要 为了研究不同的冷却流道布局对大面积比铣槽喷管三维再生冷却槽道在循环工作条件下的热结构响应和低周疲劳寿命的影响,采用有限体积流—热耦合计算方法、非线性有限元热—结构耦合分析方法和局部应变法对比分析了冷却剂单向逆流、单向顺流和先顺向流动再逆向流动的来回流三种流道布局方案。计算结果表明,铣槽喷管内衬最严重的节点应变主要发生在喷管前部内衬燃气侧壁面与肋条对称面及槽道对称面相交的危险区域,这也是节点低周疲劳寿命最小的位置;铣槽内衬节点的应变时间历程主要由塑性应变决定,肋条与槽道对称面上内衬节点的热结构响应存在较大差异;采用冷却剂单向逆流布局的铣槽喷管内衬节点应变幅和残余应变最大,导致喷管疲劳使用寿命最短;采用冷却剂单向顺流布局的铣槽喷管内衬节点应变幅和残余应变最小,导致喷管低周疲劳寿命最长;采用冷却剂来回流布局的再生冷却喷管铣槽内衬的热结构响应和疲劳使用寿命均处于上述两者之间,但取消了喷管尾部集合器和外置冷却剂供给管路等易失效的部件。 To investigate the effects of different coolant passage layouts on the thermal-structural re- sponse and low cycle fatigue life of 3D regeneratively cooled channel wall nozzle with high area ratio under cyclic working loads, the finite volume fluid-thermal coupling calculation method, nonlinear finite element thermal-structural coupling analysis method and local strain metJhod were adopted to analyze the coolant backward flow layout, coolant forward flow layout and coolant forward to backward flow layout. Numerical simulation results show that the most serious strain on milled liner of channel wall nozzle mainly occurs at the intersectant regions of liner gas side wall and symmetric planes of rib and channel in the front of nozzle extension, where the minimum node low cycle fatigue life takes place. The node strain history of milled channel nozzle is primarily dominated by the plastic deformation, and the thermal-structural responses be- tween liner nodes, respectively, locating on the symmetric planes of rib and channel exist significant differ- ence. The largest strain amplitude and residual strain during cyclic operation of milled channel nozzle em- ploying coolant backward flow layout result in the shortest fatigue service life. On the contrary, the milled channel nozzle employing coolant forward flow layout with the smallest strain amplitude and residual strain has the longest low cycle fatigue life. Both the thermal-structural response and fatigue life of milled channelnozzle employing coolant forward to backward flow layout fall in between above two nozzles, but it has elimi- nated the easily damaged aft manifold and coolant feed line.
出处 《推进技术》 EI CAS CSCD 北大核心 2013年第9期1257-1265,共9页 Journal of Propulsion Technology
关键词 再生冷却喷管 冷却剂流道 低周疲劳寿命 非线性有限元 热结构耦合 Regeneratively cooled nozzle Coolant passage Low cycle fatigue life Nonlinear finite element Thermal-structural coupling
  • 相关文献

参考文献18

  • 1Komar D R,Christenson R L. Reusable Launch Vehicle Engine Systems Operations Analysis[ R]. AIAA 96-4246.
  • 2Marsik S J,Gawrylowicz H T. Structural Integrity and Du-rability for Space Shuttle Main Engine and Future Reus- able Space Propulsion Systems[ R]. AIAA 86-1513.
  • 3Jeffry F, Fritz K,Frank S. Development of Channel Wall Nozzles for Use on Liquid Propellant Rocket Engine[ R]. AIAA 2005-4306.
  • 4In-Kyung S, William A. A Subscale-Based Rocket Com- bustor Life Prediction Methodology [ R ]. AIAA 2005- 3570.
  • 5杨进慧,陈涛,金平,蔡国飙.液体火箭发动机再生冷却槽寿命预估[J].航空动力学报,2012,27(4):907-912. 被引量:7
  • 6Jorg R R, Oskar J H,Evgeny B Z. Influence of Time De- pendent Effects on the Estimated Life Time of Liquid Rocket Combustion Chamber Walls [ R ]. AIAA 2004- 3670.
  • 7Cikanek H A. Characteristics of Space Shuttle Main En- gine Failures[ R]. AIAA 87-1959.
  • 8Larson E W. Investigation of the Fuel Feed Line Failures on the Space Shuttle Main Engine[ R]. AIAA S0-1309.
  • 9Winterfeldt L,Stenstrom E. Functional Aspects on Laser Welded Sandwich Walls for Rocket Engine Nozzles [ R ]. A1AA 2001-3695.
  • 10Boman A,Haggander J. Laser Welded Channel Wall Noz- zle Design, Manufacturing and Hot Gas Testing [ R ]. AIAA 99-2750.

二级参考文献29

  • 1李茂德,殷亮,乐伟,林泉.半导体制冷系统电极非稳态温度场的数值分析[J].同济大学学报(自然科学版),2004,32(6):767-770. 被引量:14
  • 2王小群,杜善义.热电制冷技术在航空航天领域的应用[J].中国航天,2006(10):22-24. 被引量:20
  • 3栾叶君,孙纪国,田昌义,尘军.氢氧推力室再生冷却内壁故障分析[J].火箭推进,2006,32(5):17-21. 被引量:11
  • 4徐德胜,刘贻贻苓,何颂文.半导体制冷与应用技术[M].上海:上海交通大学出版社.1998.1-7.
  • 5Francis J,DiSalvo. Thermoelectric cooling and power generation [J]. Science, 1999,285(7) : 703-706.
  • 6L Y Huang,JC Lin, K D She, et al. Development of low-cost micro-thermoelectric coolers utilizing MEMStechnology[J]. Sensors and Actuators: A Physical, 2008,148(1) : 176-185.
  • 7Z M Deng,X L Cheng,X Q Wang. Analysis and De- sign for the Thermo-Smart Structure of Composite with TEC [-A]. International Conference on Smart Materials and Nanotechnology in Engineering [C]. 2007,642336.
  • 8R Chein,G Huang. Thermoelectric cooler application in electronic cooling [J]. Applied Thermal Engi- neering ,2004,24(14-15) :2207-2217.
  • 9J L Cui, H Fu,X L Liu,et al. Thermoelectric proper- ties in p-type nanostructured Ge-doped Sbloo GeTelso alloy [J]. Current Ap plied Physics, 2009,9 (5) .. 1170- 1174.
  • 10Y S Hor,R J Cava. Thermoelectric properties of Sn- doped Bi-Sb[J]. Journal of Alloys and Compounds,2009,479(1-2):368-371.

共引文献10

同被引文献29

  • 1Di LIU,Bing SUN,Taiping WANG,Jiawen SONG,Jianwei ZHANG.Thermo-structural analysis of regenerative cooling thrust chamber cylinder segment based on experimental data[J].Chinese Journal of Aeronautics,2020,33(1):102-115. 被引量:2
  • 2程玉强,魏鹏飞,吴建军.基于模糊推理的液体火箭发动机推力室减损控制研究[J].火箭推进,2005,31(3):9-13. 被引量:1
  • 3栾叶君,孙纪国,田昌义,尘军.氢氧推力室再生冷却内壁故障分析[J].火箭推进,2006,32(5):17-21. 被引量:11
  • 4Quentmeyer R. Experimental Fatigue Life Investigation of Cylindrical Thrust Chambers[ R] . AIAA 77-893.
  • 5Cook R, Quentmeyer R. Advanced Cooling Techniques for High-Pressure, Hydrocarbon-Fueled Rocket En- gines[Rl. AIAA 80-1266.
  • 6Sung I, Anderson W. A Subscale-Based Rocket Combus- tor Life Prediction Methodology[R]. AIAA 2005-3570.
  • 7Riccius J R, Zametaev E B, Haidn O J. LRE Chamber Wall Optimization Using Plane Strain and Generalized Plane Strain Models[ R]. A1AA 2006-4366.
  • 8YANG Jin-Hui, Chen Tao, Jin Ping, et al. Influence of the Startup and Shutdown Phases on the Viscoplastic Structural Analysis of the Thrust Chamber Wall [J]. Aerospace Science and Technology, 2014, 34: 84-91.
  • 9Popp M, Schmidt G. Rocket Engine Combustion Cham- ber Design Concepts for Enhanced Life [R]. AIAA 96- 3303.
  • 10Riccius J R, Zametaev E B, Haidn O J. Comparison of 2D and 3D Structural FE-Analyses of LRE Combustion Chamber Walls[ RI. AIAA 2006-4365.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部