期刊文献+

膜面积及阳极面积对立方体型MFC产能影响的研究 被引量:4

The Effect of Cation Exchange Membrane Area and Anode Surface Area Optimization on the Performance of Cubic-type Microbial Fuel Cells
下载PDF
导出
摘要 以生活污水为底物,普通石墨棒为电极,构建立方体型微生物燃料电池(microbial fuel cell,MFC)。研究了阳离子交换膜(cation exchange membrane,CEM)面积和阳极面积对微生物燃料电池产电能力的影响。阳极以厌氧污泥作接种体,并且未使用中介体,两室分隔物使用阳离子交换膜(cation exchange membrane,CEM),阴极使用无催化剂的普通碳电极。采用几种不同的阳极面积和阳离子交换膜面积,以最大功率密度和内阻等作为比较参数,比较其产电性能。实验结果表明:①当阳离子交换膜面积较小时,功率密度随其增加而增大,内阻则随其增加而减小。但两者的变化幅度均逐渐减小,两者到达极值后,功率密度随其增加而减小,内阻则随其增加而增大。在膜面积为21 cm2的时候,电池各项性能指标均达到最佳;其开路电压(OCV)为233 mV,最大功率密度为3.44 mW·m2,电池内阻为2.10 kΩ。②MFC产能除了与膜面积相关外,受阳极面积的限制也很大。要得到最大的能量输出,膜面积应该略大于阳极面积。最佳产能时离子交换膜与阳极的面积比为1.37。 The technology of building the cube-type microbial fuel cell(MFC) is based on the use of living sew- age as substrate and ordinary graphite rod as electrode, which also studies the effects that the cation exchange mem- brane(CEM) area and the anode area excert on the electricity generation capacity of microbial fuel cell (MFC). The anode with anaerobic sludge as the inoculum and no use of intermediary body as well as two-room divider using cation exchange membrane(CEM) are presented. Besides, taking the maximum power density and the internal re- sistance as the parameter, this thesis makes a comparison of the electricity generation capacity of cathode catalyst with the use of ordinary carbon electrode and various areas of the anode and cation exchange membrane (CEM). The conclusions of the research can be as follows:(~ When the cation exchange membrane is small in size, the power density will grow while the internal resistance will decrease with its increase, but the amplitude of variation will be reduced. When it reaches to the extremum, the power density will decrease while the internal resistance will increase. When the membrane area accounts to 21 cm2 , the battery can achieve optimal performance with its open- circuit voltage(OCV) of 233 mV, the maximum power density of 3.44 mW ~ m-2, the internal resistance of 2. 10 k~. (~) Apart from the membrane area, the anode area also puts some constraints on MFC capacity. To get the maximum energy output, the membrane area should be slightly larger than that of the anode, and when it reaches optimal performance, the area ratio of ion exchange membrane and the anode should be 1.37.
出处 《科学技术与工程》 北大核心 2013年第25期7338-7342,共5页 Science Technology and Engineering
基金 国家自然科学基金项目(51278317)资助
关键词 微生物燃料电池 功率密度 内阻 膜面积 面积比 microbial fuel cellspower density internal resistance membrane area area ratio
  • 相关文献

参考文献2

二级参考文献14

  • 1尤世界,赵庆良,姜珺秋.电极构型对空气阴极生物燃料电池发电性能的影响[J].环境科学,2006,27(11):2159-2163. 被引量:20
  • 2赵庆良,张金娜,尤世界,姜珺秋.不同阴极电子受体从生物燃料电池中发电的比较研究[J].环境科学学报,2006,26(12):2052-2057. 被引量:15
  • 3布鲁斯·洛根.微生物燃料电池[M].冯玉杰,王鑫,译.北京:化学工业出版社,2009.
  • 4Rabaey K,Verstraete W. Microbial fuel cells:novel biotechnology for energy generation [ J ]. Trends in Biotechnology, 2005,23 (16) :291-298.
  • 5Rabaey K, Lissens G, Siciliano S D, et al. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency [ J ]. Biotechnology Letters,2003,25 ( 18 ) : 1531 - 1535.
  • 6Daniel D K, Mankidy B D, Ambarish K, et al. Construction and operation of a microbial fuel cell for electricity generation from wastewater[ J ]. International Journal of Hydrogen Energy,2009, 34 (17) :7555-7560.
  • 7Chaudhuri S K, Lovley D R. Electricity generation by direct oxidation of glucose in mediator-less microbial fuel ceils [ J ]. Nature Biotechnology ,2003,21 (10) : 1229-1232.
  • 8Oh S E, Min B, Logan B E. Cathode performance as a factor in electricity generation in microbial fuel cells[J]. Environmental Science and Technology ,2004,38 ( 18 ) :4900-4904.
  • 9Oh S E, Logan B E. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells [ J ]. Applied Microbiology and Biotechnology, 2006,70 (2) :162-169.
  • 10Ghangrekar M M, Shinde V B. Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production [ J ]. Bioresource Technology ,2007,98 ( 15 ) :2879-2885.

共引文献13

同被引文献35

  • 1梁鹏,范明志,曹效鑫,黄霞,王诚.微生物燃料电池表观内阻的构成和测量[J].环境科学,2007,28(8):1894-1898. 被引量:118
  • 2Donglai Xie,Fang Wang,Kui Wu,Ertao Zhang,Yajun Zhang.Permeation efficiency of Pd–Ag membrane modules with porous stainless steel substrates[J].Separation and Purification Technology.2012
  • 3Donglai Xie,Jinfeng Yu,Fang Wang,Ning Zhang,Weixing Wang,Hao Yu,Feng Peng,Ah-Hyung A. Park.Hydrogen permeability of Pd–Ag membrane modules with porous stainless steel substrates[J].International Journal of Hydrogen Energy.2010(1)
  • 4A. Moparthi,R. Uppaluri,B.S. Gill.Economic feasibility of silica and palladium composite membranes for industrial dehydrogenation reactions[J].Chemical Engineering Research and Design.2010(8)
  • 5Donglai Xie,C. Jim Lim,John R. Grace,Alaa-Eldin M. Adris.Gas and particle circulation in an internally circulating fluidized bed membrane reactor cold model[J].Chemical Engineering Science.2009(11)
  • 6Alessio Caravella,Giuseppe Barbieri,Enrico Drioli.Concentration polarization analysis in self-supported Pd-based membranes[J].Separation and Purification Technology.2009(3)
  • 7Andrés Mahecha-Botero,Zhongxiang Chen,John R. Grace,S.S.E.H. Elnashaie,C. Jim Lim,Mohammad Rakib,Isamu Yasuda,Yoshinori Shirasaki.Comparison of fluidized bed flow regimes for steam methane reforming in membrane reactors: A simulation study[J].Chemical Engineering Science.2009(16)
  • 8Federico Guazzone,Erik Edwin Engwall,Yi Hua Ma.Effects of surface activity, defects and mass transfer on hydrogen permeance and n -value in composite palladium-porous stainless steel membranes[J].Catalysis Today.2006(1)
  • 9Yu-Ming Lin,Min-Hon Rei.Separation of hydrogen from the gas mixture out of catalytic reformer by using supported palladium membrane[J].Separation and Purification Technology.2001(1)
  • 10王万成,陶冠红.微生物燃料电池运行条件的优化[J].环境化学,2008,27(4):527-530. 被引量:17

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部