摘要
传统的最小均方误差(Least Mean Square)算法难以同时获得较快的收敛速度和较小的稳态误差。在对传统LMS算法、变步长LMS算法及其改进算法分析的基础上,通过建立步长参数与梯度向量之间的一种新的非线性函数关系,提出一种改进的变步长LMS算法。分析和仿真表明,改进后的算法收敛速度更快,均方误差更小;同时也具有良好的抗噪性能。
The traditional Least Mean Square (LMS) algorithm has difficulty in gaining the fast convergence speed and low steady state error at the same time. Based on a brief analysis of traditional LMS, variable-step-size LMS algorithm and its improved algorithm, establishing a new nonlinear functional relationship between the step-size and the gradient veetor,a new improved variable-step-size LMS algorithm is proposed. The theoretical analysis and computer simulation prove that this algorithm converges faster, with smaller mean square error and good anti-noise performance.
出处
《科学技术与工程》
北大核心
2013年第25期7538-7541,共4页
Science Technology and Engineering
关键词
LMS算法
变步长
梯度向量
LMS algorithmvariable -step-sizegradient vector