期刊文献+

回归大椭圆轨道卫星轨迹保持策略与仿真 被引量:3

Strategy and Simulation of Recursive HEO Orbit Maintenance
下载PDF
导出
摘要 为了实现大椭圆轨道卫星星下点在一定经度范围内回归,保持对特定区域的长时间观测,对优化轨迹保持策略进行了深入研究。首先提出了必须根据共振大椭圆卫星的轨道演变规律进行轨迹保持。同时分析了大椭圆轨道卫星满足回归条件的轨道约束;其次分析了主要动力学模型的摄动规律,建立了轨道摄动对升交点赤经、半长轴以及轨迹漂移影响的计算模型;最后结合工程应用实际,给出了具体的回归大椭圆轨道的轨迹保持周期和保持策略。通过仿真实验及结果分析,表明了该策略的正确性和有效性,为回归大椭圆轨道卫星的轨道设计和测控实施提供技术参考。 To keep sub-point of High Eccentric Orbit (HEO) recursive within a certain range of longitude, as well as to perform long time observation to the particular region, the orbit maintenance strategy was studied. Firstly, it was necessary to maintain orbit according to the orbital evolution law of resonant HEO. Meanwhile, the HEO orbit constraints which could meet the recursive condition were analyzed. Secondly, the perturbation law of the main dynamical model was introduced. And the calculation model of the perturbation and its influence on fight ascension of ascending node, semi-major axis and orbital drift was founded. Last, the orbit maintenance strategy of HEO orbit and its period were concluded. Through the simulation experiments, this strategy was proved to be feasible and valid, which could provide technical reference for orbit design and control of HEO orbit satellites.
出处 《科学技术与工程》 北大核心 2013年第26期7711-7715,共5页 Science Technology and Engineering
基金 国家自然科学基金项目(11273072)资助
关键词 卫星 回归大椭圆轨道 轨迹保持 轨道演变 satellites recursive HEO orbit maintenance orbit evolution
  • 相关文献

参考文献6

二级参考文献19

  • 1胡小工,黄珹,黄勇.环月飞行器精密定轨的模拟仿真[J].天文学报,2005,46(2):186-195. 被引量:16
  • 2黄勇,胡小工,黄珹,蒋栋荣,郑为民,张秀忠.利用VLBI数据确定“探测一号”卫星的轨道[J].天文学报,2006,47(1):82-92. 被引量:12
  • 3Azimov D M, Bishop R H. Extremal rocket motion with maximum thrust in a linear central field[ J]. Journal of Spacecraft and Rockets, 2001, 38(5) : 765 - 776.
  • 4Markopoulos N. Analytically exact non-Keplefian motion for orbit transfers[ R]. AIAA Paper 94 - 3758.
  • 5Fukushima T. New two-body regularization [ J ]. The Astronomical Journal, 2007, 133 : 1 - 10.
  • 6Fukushima T. Numerical comparison of two-body regularizations [ J ]. The Astronomical Journal, 2007, 133:2815 - 2824.
  • 7Poleshchickov S M. Regularization of motion equations with L-Transformation and numerical integration of the regular equations[J].Celestial Mechanics and Dynamical Astronomy, 2003, 85:341 -393.
  • 8Waldvogel J. Order and chaos in satellite encounters[ C]//Steves B A, ed. Chaotic Worlds: from Order to disorder in Gravitational N-Body Dynamical Systems, 2006: 231- 251.
  • 9RIM H J, SCHUTZ B E, WEBB C. Demarest P. Orbit Maintenance and Characteristics for a Sar Satellite [J]. AIAA-98-4394, 1998.
  • 10SOOP E M. Handbook of Geostationary orbit [M]. Kluwer academic publishers, 1994.

共引文献3

同被引文献24

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部