摘要
In this paper, the Pad6 approximant and analytic solution in the neighborhood of the initial value are introduced into the process of constructing the Shilnikov type homoclinic trajectories in three-dimensional nonlinear dynamical systems. The P1D controller system with quadratic and cubic nonlinearities, the simplified solar-wind-driven-magnetosphere-ionosphere system, and the human DNA sequence system are considered. With the aid of presenting a new condition, the solutions of solving the boundary-value problems which are formulated for the trajectory and evaluating the initial amplitude values become available. At the same time, the value of the bifurcation parameter is obtained directly, which is almost consistent with the numerical result.
In this paper, the Pad6 approximant and analytic solution in the neighborhood of the initial value are introduced into the process of constructing the Shilnikov type homoclinic trajectories in three-dimensional nonlinear dynamical systems. The P1D controller system with quadratic and cubic nonlinearities, the simplified solar-wind-driven-magnetosphere-ionosphere system, and the human DNA sequence system are considered. With the aid of presenting a new condition, the solutions of solving the boundary-value problems which are formulated for the trajectory and evaluating the initial amplitude values become available. At the same time, the value of the bifurcation parameter is obtained directly, which is almost consistent with the numerical result.
基金
supported by the National Natural Science Foundation of China (Grant Nos. 11072168 and 11102127)
the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100032120006)
the Research Program of Application Foundation and Advanced Technology of Tianjin, China (Grant Nos. 12JCYBJC12500 and 11JCYBJC05800)