期刊文献+

利用特征线法求解方程u_t+b·Du+cu=(fx,t)的初值问题

Solving the Initial-Value Problem of Equation u_t +b·Du+cu=f(x,t) with the Method of Characteristics
下载PDF
导出
摘要 本文研究具有初值条件u(x,0)=g(x)的方程u_t+b·Du+cu=f(x,t)的初值问题。方程u_t+b·Du+cu=f(x,t)是具有常系数的一阶非齐次线性偏微分方程,这类方程在变分法、质点力学和几何学中都出现过,因此研究这类方程的目的是更好地应用于这些学科。求解这类方程的最基本方法是特征线法。它是把偏微分方程转化为常微分方程或常微分方程组,通过求解这些常微分方程得到所要求的解。本文分别运用特征线法以及特征线法的特殊情况求解了该初值问题,两种方法所得到的解是一致的,都是u(x,t)=g(x-bt)e^(-ct)+e^(-ct)integral from n=0 to te^(cu)f(x+b(u-t),u)du。因此,有了通过特征线法所求得的该初值问题的解的公式,我们可以更好地研究相关的一些实际问题。 The paper studies initial-value problem of equation u, +b. Ut+b·Du+cu=f(x,t) with initial condition u (x, 0 ) =g(x). Equation Ut+b·Du+cu=f(x,t) is of one order non homogeneous linear partial differential equation with constant coefficients, and this kind of equations appeared in the Variational method,particle mechanics and geometry, so the study of this kind of equation is intended to be better applied in these disciplines. The most basic method of solving this kind of equations is the method of characteristics. It converts the partial differential equation into ordinary differential equations, and the requested solution is get by solving the ordinary differential equations. The paper respectively makes use of the method of characteristics and a special case of the method of characteristics to solve the initial-value problem, and the solutions are consistent, being(x+b (u-t),u)du. Therefore, there is the formula of the solution of initial-value problem being obtained by the method of characteristics, and we can better study the related problem.
出处 《科技视界》 2013年第24期20-21,共2页 Science & Technology Vision
基金 江苏省高校自然科学基金资助项目(10KJB110003)
关键词 线性偏微分方程 初值问题 特征线法 常微分方程 Linear partial differential equation Initial-value problem The method of characteristics Ordinary differential equations
  • 相关文献

参考文献8

二级参考文献18

  • 1HONG JIAXING.DARBOUX EQUATIONS AND ISOMETRIC EMBEDDING OF RIEMANNIAN MANIFOLDS WITH NONNEGATIVE CURVATURE IN R[J].Chinese Annals of Mathematics,Series B,1999,20(2):123-136. 被引量:3
  • 2于景元,赵军,朱广田.经济增长中的投资控制模型[J].系统工程理论与实践,1996,16(4):13-20. 被引量:61
  • 3林文清,王路漫.仓库货物储存的一个数学模型[J].内蒙古科技与经济,2006(07S):20-22. 被引量:1
  • 4HAROLD Levine.偏微分方程[M].葛显良,译.北京:高等教育出版社,2007:247-276.
  • 5Bleekcer David.基础偏微分方程[M].北京:高等教育出版社,2006.
  • 6纳克莱·H·亚斯马.偏微分方程教程[M].北京:机械工业出版社,2005.
  • 7[美]约翰.偏微分方程[M].朱汝金,译.北京:科学出版社,1986.
  • 8Nambu Y. Quark model and the factorization of the Veneziano amplitude, in symmetries and quark models[M].New York: Gordon and Breach, 1970. 269~277
  • 9Leibov O. Symmetry reduction and mathematical physics(Ukrainian)[J]. Pr Inst Mat Nats, Akad Nauk Ukr Mat Iastos, 1988, 19:138~145
  • 10Zhu C J. Global resolvability for a viscoelastic model with relaxation[J]. Proc Roy Soc Edinburgh, 1995, 125A: 1 277~1 285

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部