期刊文献+

Phase Effect in Controlling Non-autonomous Chaos in the Presence of Noise

Phase Effect in Controlling Non-autonomous Chaos in the Presence of Noise
下载PDF
导出
摘要 The effect of random phase on the Josephson junction system dynamic model is investigated.It is shown that random phase has the suppressing ability for controlling chaos.The top Lyapunov exponent is used to detect the chaotic dynamics in the system,and the method for calculating the top Lyapunov exponent is based on Khasminskii’s spherical coordinate formulation for linear stochastic systems.In addition,Poincarémap,phase portraits and time evolution are investigated to verify the obtained results.It is found that these results have the excellent agreement. The effect of random phase on the Josephson junction system dynamic model is investigated. It is shown that random phase has the suppressing ability for controlling chaos. The top Lyapunov exponent is used to detect the chaotic dynamics in the system, and the method for calculating the top Lyapunov exponent is based on Khasminskii's spherical coordinate formulation for linear stochastic systems. In addition, Poincare map, phase portraits and time evolution are investigated to verify the obtained results. It is found that these results have the excellent agreement.
出处 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第4期48-51,共4页 哈尔滨工业大学学报(英文版)
关键词 chaos control random phase Gauss white noise chaos control, random phase, Gauss white noise
  • 相关文献

参考文献19

  • 1Zhang J G, Li X F, Chu Y D, et al. Hopf Bifurcations, Lyapunov exponents and control of chaos for a class of centrifugal flywheel governor system. Chaos, Solitons & Fractals, 2009, 39(5): 2150-2168.
  • 2Wu C L, Lei Y M, Fang T. Stochastic chaos in a Duffing oscillator and its control. Chaos, Solitons & Fractals, 2006, 27 (2) : 459 - 469.
  • 3Ott E, Grebogi C, Yorke J A. Controlling chaos. Physical Review Letters, 1990, 64( 11 ) : 1196 - 1199.
  • 4Qu Z L, Hu G, Yang G J, et al. Phase effect in tamping non-autonomous chaos by weak harmonic perturbations. Physical Review Letters, 1995, 74(10) : 1736 - 1739.
  • 5Lei Y M, Xu W, Xu Y, et al. Chaos control by harmonic excitation with proper random phase. Chaos, Solitons & Fractals, 2004, 21 (5) : 1175 - 1181.
  • 6Xu Y, Xu W, Gamal M M. On a complex Duffing system with random excitation. Chaos, Solitons & Fractals, 2008,35(1): 126 -132.
  • 7Xu Y, Mahmoud G M, Xu W, et al. Suppressing chaos of a complex Duffing: system using a random phase. Chaos, Solitons & Fractals, 2005, 23 ( 1 ) : 265 - 273.
  • 8Tung W W, Gao J B, Hu J, et al. Detecting chaos in heavy-noise environments. Physical Review E, 2011, 83 (4) : 046210.
  • 9Liu W Y, Zhu W Q, Huang Z L. Effect of bounded noise on chaotic motion of Duffing oscillator under parametric excitation. Chaos, Solitons & Fractals, 2001, 12 (3): 527 - 537.
  • 10Ramesh M, Narayanan S. Chaos control by non-feedback methods in the presence of noise. Chaos, Solitons & Fractals, 1999, 10(9): 1473-1489.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部