期刊文献+

Gd^(3+)/Yb^(3+)掺杂ZnO量子点作为双模式磁共振/CT成像探针 被引量:1

Gd^(3+)/Yb^(3+)-Doped Zinc Oxide Quantum Dots for Dual Modal Magnetic Resonance Imaging/Computed Tomographic Imaging
下载PDF
导出
摘要 基于结合磁共振成像(MRI)的高空间分辨率和CT成像的深穿透能力设计思想,在乙醇溶液中水解醋酸锌、醋酸钆和醋酸镱,制备了油酸稳定的Gd3+/Yb3+掺杂ZnO量子点(ZnO∶Gd/Yb),并对其表面进行了氨基修饰。研究了ZnO∶Gd/Yb量子点的弛豫性能、X射线吸收性能、细胞毒性及体外MRI和CT成像。当Zn2+,Gd3+,Yb3+的摩尔比为1.0∶0.12∶0.20时,ZnO∶Gd/Yb量子点展现了最高的弛豫效率6.06 mmol/(L.s)对X-射线的吸收能力也显著高于临床CT造影剂碘比醇。体外MRI和CT成像实验表明,当Gd3+的浓度为1.5 mmol/L时,T1加权MRI信号明显增强,当Yb3+的浓度为5 g/L时,可呈现清晰的CT图像。细胞毒性实验表明,ZnO∶Gd/Yb量子点的浓度低于1.5 mmol/L(Gd3+)时,量子点的毒性相对较低。 The oleate-stabilized ZnO:Gd/Yb QDs was first prepared by doping rare earth ions into ZnO host matrix in ethanol solution,and then amido was grafted onto the surface by a covalent bond.These nanoprobes,with exceptionally small size and good water-dispersability,exhibited a longitudinal relaxivity r1 of 6.06 mmol/(L·s),which was higher than that of clinic contrast agent Gd-diethylenetriaminepentaacetic acid(DTPA)(4.3 mmol/(L·s)).In magnetic resonance imaging(MRI) studies,they exerted strong positive contrast effect when the Gd concentration was 1.5 mmol/L.Furthermore,computed tomography(CT) imaging showed that these nanoprobes could induce an efficient contrast enhancement when the Yb concentration was at least equal to 5.0 g/L.These nanoprobes presented relatively low toxicity or adverse affect on cell growth even at the concentration up to 1.5 mmol/L Gd3+.
出处 《分析化学》 SCIE EI CAS CSCD 北大核心 2013年第8期1159-1164,共6页 Chinese Journal of Analytical Chemistry
基金 国家自然科学青年基金(No.21003013) 吉林省科技厅自然科学基金(No.201215126)项目资助
关键词 ZnO量子点 探针 弛豫性能 磁共振成像 CT成像 Zinc oxide quantum dots Nanoprobes Relaxivity Computed tomography Magnetic resonance imaging
  • 相关文献

参考文献18

  • 1Wang S,Jarrett B R,Kauzlarich S M,Louie A Y.J.Am.Chem.Soc.,2007,129(13):3848-3856.
  • 2RieterWJ,KimJS,TaylorKML,AnH,LinW,TarrantT,LinW.Angew.Chem.Int.Ed.,2007,46:1-4.
  • 3Tu C,Ma X,Pantazis P,Kauzlarich S M,Louie A Y.J.Am.Chem.Soc.,2010,132(6):2016-2023.
  • 4Santra S,Bagwe R P,Dutta D,Stanley J T,Walter G A,Tan W,Moudgil B M,Mericle R A.Adv.Mater.,2005,17(18):2165-2169.
  • 5JangJ,NahH,LeeJ,MoonSH,KimMG,CheonJ.Angew.Chem.Int.Ed.,2009,48:1-6.
  • 6张兵波,宫晓群,李卓权,郭方方,蔡少瑜,孔继烈,杨秋花,马浩,常津,时东陆.用于疾病诊断的Gd^Ⅲ/量子点多模态成像探针的构建[J].高等学校化学学报,2010,31(5):982-985. 被引量:15
  • 7Das G K,Zhang Y,D'Silva L,Padmanabhan P,Heng B C,Loo J S C,Selvan S T,Bhakoo K K,Tan T T Y.Chem.Mater.,2011,23(9):2439-2446.
  • 8Liu Y,Ai K,Yuan Q,Lu L.Biomaterials,2011,32(4):1185-1192.
  • 9Jin T,Yoshioka Y,Fujii F,Komai Y,Seki J,Seiyama A.Chem.Commun.,2008:5764-5766.
  • 10Kalender W A.Phys.Med.Biol.,2006,51 (13):P29-R43.

二级参考文献55

共引文献36

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部