期刊文献+

基于V-系统的时间序列跳跃点检测新算法

A Novel Algorithm for Jump Point Detection of Time Series Based on V-system
下载PDF
导出
摘要 一些时间序列中跳跃点往往包含比较重要的信息,对其进行检测和定位对实证分析有着非常重要的意义。本文基于一种完备正交函数系、多小波-V系统,构造了离散正交V变换,提出检测跳跃点的一种新算法DOVT-JDA(Discrete Orthogonal V Translation-Jump Point Detection Algorithm),并针对存在市场微观结构噪音和跳跃的时间序列做了数值模拟。模拟结果表明本文提出的检测跳的新算法DOVT-JDA不仅行之有效,而且计算简单。 Frequently, the jump point of time series contains Very important messages. So, the detection and location of jump is of great significance for the demonstration analysis. Here, we propose a new jump point detection algorithm based on V-system and its discrete orthogonal translation named DOVT-JDA(Discrete Orthogonal V Translation-Jump Point Detection Algorithm). Then, we carry out numerical simulations for the time series encompasses market microstrueture noise and jump. The experiments have shown the viability and effectiveness of the new iumn detection algorithm.
作者 沈兰
机构地区 北方工业大学
出处 《价值工程》 2013年第28期219-221,共3页 Value Engineering
关键词 跳跃点检测 V系统 离散正交V变换 jump detection V-system discrete orthogonal V-translation
  • 相关文献

参考文献4

二级参考文献25

  • 1王建稳,肖春来.非对称Possion跳——扩散模型的参数估计[J].数理统计与管理,2005,24(4):76-79. 被引量:4
  • 2Press,S.J.. A compound events model for security prices[J].Journal of Business,1967 (40).
  • 3Merton,R.C..Option Pricing when the underlying stock returns are discontinuous[J]. Journal of Finaneial Eeonomics, 1976(3).
  • 4Black.F,and M.Seholes.The pricing of options and corporate liabilities[J].The Journal of Political Economy,1973(3).
  • 5Jorion,P..On jump processes in the foreign exchange and stock markets[J].Review of Financial Studies,1988(1).
  • 6Song, R. X., Ma, H., Wang, T. J., et al.: The complete orthogonal V-system and its application. Commun. Pure Appl. Anal., 6(3), 853-871 (2007).
  • 7Alpert, B.: A class of bases in L^2 for the sparse representation of integral operators. SIAM J. Math. Anal., 24, 246-262 (1993).
  • 8Micchelli, C. A., Xu, Y. X.: Using the matrix refinement equation for the construction of wavelets on invariant sets. Appl. Comput. Harmon. Anal., 1, 391-401 (1994).
  • 9Strela, V.: Multiwavelets: Theory and Applications, PhD thesis, MIT, 1996.
  • 10Goodman, T. N. T., Lee, S. L.: Wavelets of multiplicity r. Trans. Amer. Math. Soc., 338(2), 639-654 (1994).

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部