期刊文献+

基于AAR模型和累积频带能量的特征提取方法 被引量:7

Feature Extraction Method Based on AAR Model and Accumulated Band Power
下载PDF
导出
摘要 提出了一种自适应自回归(AAR)模型参数和累积频带能量相结合的特征提取方法,该特征应用于基于运动想象脑-机接口(BCI)之中,实现左右手运动想象分类,改善BCI系统的性能.首先,对头皮EEG数据进行小波分解和重构,去除EEG中的噪声,得到不同频带的EEG数据.然后,提取EEG数据的AAR模型参数特征和不同频带的频带能量特征,提出了累积频带能量特征和AAR与累积频带能量相结合的特征提取方法,分别以AAR模型参数、频带能量、累积频带能量和AAR+累积频带能量为特征,利用线性判别分析(LDA)分类器对左右手运动想象任务进行特征分类.最后,对不同特征的分类结果进行比较,得出以AAR+累积频带能量作为特征在BCI系统中的优越性能. A feature extraction method based on the combination of adaptive autoregressive (AAR) model parameters and accumulated band power was presented. The combination feature was used as feature vector to discriminate the left and right hand motor imagery in the brain-computer interface (BCI) system based on motor imagery. The perform- ance of BCI was improved through this method. Firstly, wavelet transformation and inverse transformation were adopted to decompose and reconstruct scalp electroencephalogram (EEG). Noises in EEG data were filtered through this process. Different frequency band EEG signals were obtained. Secondly, the AAR model parameters and band power of different frequency bands were extracted. Then the feature extraction method based on accumulated band power feature and the combination of AAR with the accumulated band power were presented. With the AAR model parameters, the band power, the accumulated band power and the combination of AAR with the accumulated band power as feature vectors respectively; the linear discriminant analysis (LDA)classifier was used to discriminate left and right hands motor imagery tasks. Lastly, a comparison of classification results among the different features was conducted. The results show that the combined feature of AAR with the accumulated band power is superior to others in the BCI system.
出处 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2013年第9期784-790,共7页 Journal of Tianjin University:Science and Technology
基金 国家自然科学基金资助项目(61072012) 国家自然科学基金青年基金资助项目(50907044 60901035)
关键词 脑-机接口 运动想象 自适应自回归模型 累积频带能量 brain-computer interface (BCI) motor imagery adaptive autoregressive model (AAR) accumulatedband power
  • 相关文献

参考文献22

  • 1Vidal J J. Real-time detection of brain events in EEG [J].Proceedings oflEEE, 1977, 65(5) : 633-641.
  • 2Pfurtscheller G, Allison B Z, Brunner C, et al. The hybrid BCI [J]. Frontiers in Neroscience, 2010, 4: 1-11.
  • 3Hochberg L R, Serruya M D, Friehs G M, et al. Neu- ronal ensemble control of prosthetic devices by a human with tetraplegia [J].Nature, 2006, 442(13): 164-171.
  • 4Pfurtscheller G, Solis-Escalante T, Ortner R, et al. Self-paced operation of an SSVEP-based orthosis with and without an imagery-based "brain switch: " A feasi- bility study towards a hybrid BCI [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2010, 18(4) : 409-414.
  • 5McFarland D J, Samacki W A, Vaughan T M, et al. Brain-computer interface (BCI) operation : Signal and noise during early training sessions [J]. Clinical Neuro- physiology, 2005, 116(1): 56-62.
  • 6Koyama S, Chase S M, Whitford A S. Comparison of brain-computer interface decoding algorithms in open- loop and closed-loop control [J]. J Comput Neurosci, 2010, 29(1/2): 73-87.
  • 7Pfurtscheller G, Muller-Putz G R, Pfurtscheller J, et al. EEG-based asynchronous BCI controls functional electrical stimulation in a tetraplegic patient [J]. EURA- SIP Journal on Applied Signal Processing, 2005, 2005(19) : 3152-3155.
  • 8Schloegl A, Lugger K, Pfurtscheller G. Using adaptive autoregressive parameters for a brain-computer interface experiment [C] //Proceedings of 19 th Annual lnt Conf of the IEEE Engineering in Medicine and Biology Soci- ety. Chicago, USA, 1997: 1533-1535.
  • 9Schloegl A, Neuper C, Pfurtscheller G. Subject specific EEG patterns during motor imaginary [C] //Proceedings of 19 th Annual lnt Conf of the IEEE Engineering in Medicine and Biology Society. Chicago, USA, 1997: 1530-1532.
  • 10王树新,肖学忠,王延辉,王子龙,陈宝阔.Denoising Method for Shear Probe Signal Based on Wavelet Thresholding[J].Transactions of Tianjin University,2012,18(2):135-140. 被引量:2

二级参考文献63

  • 1罗冠,郝重阳,张雯,樊养余.虚拟人技术研究综述[J].计算机工程,2005,31(18):7-9. 被引量:18
  • 2Piera Jaume, Roget Elena, Catalan Jordi. Turbulent patch identification in microstructure profiles: A method based on wavelet denoising and Thorpe displacement analysis [J]. Journal of Atmospheric and Oceanic Technology, 2002, 19 (9) : 1390-1402.
  • 3Azzalini Alexandre, Farge Marie, Schneider Kai. Nonlinear wavelet thresholding: A recursive method to determine the optimal denoising threshold [J]. Applied and Computa- tional Harmonic Analysis, 2005, 18 (1) : 177-185.
  • 4Roget Elena, Lozovatsky Iossif, Sanchez Xavier et al. Microstructure measurements in natural waters: Methodol- ogy and applications [J]. Progress in Oceanography, 2006, 70 (2/3/4) : 126-148.
  • 5Fan Qibin. Wavelet Analysis [M]. Wuhan University Press, Wuhan, China, 2008 (in Chinese).
  • 6Giaouris D, Finch J W, Frreira O C et al. Wavelet denoising for electric drives [J]. IEEE Transactions on lndustrialElectronics, 2008, 55 (1) : 543-550.
  • 7To Albert C, Moore Jeffrey R, Glaser Steven D. Wavelet denoising techniques with applications to experimental geophysical data [J]. Signal Processing, 2009, 89(1): 144-160.
  • 8Nasmyth P W. Oceanic Turbulence[D]. University of British Columbia, Vancouver, BC, Canada, 1970.
  • 9Macoun Paul, Lueck Roll. Modeling the spatial response of the airfoil shear probe using different sized probes [J]. Journal of Atmospheric and Oceanic Technology, 2004, 21 (2) : 284-297.
  • 10Liberson WT,Holmquest HJ,Scott D,et al.Functional electrotherapy:Stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients.Arch Phys Med Rehabil.1961,42(1):101-105.

共引文献91

同被引文献83

  • 1杨立才,李佰敏,李光林,贾磊.脑-机接口技术综述[J].电子学报,2005,33(7):1234-1241. 被引量:68
  • 2廖祥,尹愚,尧德中.基于连续小波变换和支持向量机的手动想象脑电分类[J].中国医学物理学杂志,2006,23(2):129-131. 被引量:14
  • 3Rieke F, Warland D, van Steveninck R, et al. Spikes: Exploring the Neural Code[M:. Cambridge, MA. The MITPress, 1997.
  • 4Squire L, Berg D, Bloom F, et al. Fundamental Neu- roscience CM:. London: Elsevier, 2008.
  • 5Daley D J, Vere-Jones D. An Introduction to the Theoryof Point Processes [M]. New York: Springer, 2003.
  • 6Hu K, Meijer J H, Shea S A, et al. Fractal pattems of neural activity exist within the suprachiasmatic nucleus and require extrinsic network interactions[J]. Plos One, 2012, 7(11): e48927.
  • 7Teich M C, Lowen S B. Fractal patterns in auditory nerve-spike trains [J]. IEEE Engineering in Medicine and Biology Magazine, 1994, 13(2): 197-202.
  • 8Teich M C. Fractal character of the auditory neural spike train[J]. IEEE Trans BiomedEng, 1989, 36(1) : 150- 160.
  • 9Teich M C, Heneghan C, Lowen S B, et al. Fractal character of the neural spike train in the visual system of the cat[J]. J Opt Soc Am A Opt linage Sci Vis, 1997, 14(3) : 529-546.
  • 10Thurner S, Lowen S B, Feurstein M C, et al. Analysis, synthesis, and estimation of fractal-rate sto- chastic point processes[J]. Fractals, 1997, 5(4): 565-595.

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部