期刊文献+

A Class of Finite-Dimensional Representations of U_q(sl_2)

A Class of Finite-Dimensional Representations of U_q(sl_2)
原文传递
导出
摘要 In order to study a class of finite-dimensional representations of Uq(sl2), we deal with the quotient algebra Uq (m, n, b) of quantum group Uq(sl2) with relations Kr=1, Emr=b, Fnr=0 in this paper, where q is a root of unity. The algebra Uq(m, n, b) is decomposed into a direct sum of indecomposable (left) ideals. The structures of indecomposable projective representations and their blocks are determined. In order to study a class of finite-dimensional representations of Uq(sl2), we deal with the quotient algebra Uq (m, n, b) of quantum group Uq(sl2) with relations Kr=1, Emr=b, Fnr=0 in this paper, where q is a root of unity. The algebra Uq(m, n, b) is decomposed into a direct sum of indecomposable (left) ideals. The structures of indecomposable projective representations and their blocks are determined.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2013年第9期1703-1712,共10页 数学学报(英文版)
基金 Supported by Doctor Scientific Research Start Fund of He’nan University of Science and Technology National Natural Science Foundation of China (Grant No. 11171296)
关键词 Quantum group REPRESENTATION root of unity Quantum group representation root of unity
  • 相关文献

参考文献7

  • 1Auslander, M., Reiten, I., Smalo, S. O.: Representation Theory of Artin Algebras, Cambridge Studies in Advanced Mathematics, Vol. 36, Cambridge University Press, Cambridge, 1995.
  • 2Cheng, D.: Restricted representations of Uq(sl2). Algebra Colloq., 7(4), 451-465 (2000).
  • 3Jantzen, J. C.: Lectures on Quantum Groups, American Mathematical Society, Providence, RI, 1996.
  • 4Suter, R.: Modules over Uq(sl2). Commun. Math. Phys., 163, 359-393 (1994).
  • 5Xiao, J.: Restricted representations of U(sl(2))-quantizations. Algebra Colloq., 1(1), 56-66 (1994).
  • 6Xiao, J.: Finite dimensional representations of Ut(sl(2)) at roots of unity. Canad. J. Math., 49(4), 772-787 (1997).
  • 7Xiao, J., Van Oystaeyen, F.: Weight modules and their extensions over a class of algebras similar to the enveloping algebra of sl(2, C). J. Algebra, 175, 844-864 (1995).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部