摘要
In this article, we first give the representation of solutions for the oblique derivative problem of mixed (Lavrentév-Bitsadze) equations in two connected domains, afterwards prove the uniqueness of solutions of the above problem. Moreover, we prove the solvability of oblique derivative problem for quasilinear mixed (Lavrentév-Bitsadze) equations of second order, and obtain a priori estimates of solutions of the above problem. The above problem is an open problem proposed by Rassias.
In this article, we first give the representation of solutions for the oblique derivative problem of mixed (Lavrentév-Bitsadze) equations in two connected domains, afterwards prove the uniqueness of solutions of the above problem. Moreover, we prove the solvability of oblique derivative problem for quasilinear mixed (Lavrentév-Bitsadze) equations of second order, and obtain a priori estimates of solutions of the above problem. The above problem is an open problem proposed by Rassias.